Orbit counting in conjugacy classes for free groups acting on trees

In this paper we study the action of the fundamental group of a finite metric graph on its universal covering tree. We assume the graph is finite, connected and the degree of each vertex is at least three. Further, we assume an irrationality condition on the edge lengths. We obtain an asymptotic for...

全面介绍

书目详细资料
Main Authors: Kenison, G, Sharp, R
格式: Journal article
语言:English
出版: World Scientific Publishing 2016
实物特征
总结:In this paper we study the action of the fundamental group of a finite metric graph on its universal covering tree. We assume the graph is finite, connected and the degree of each vertex is at least three. Further, we assume an irrationality condition on the edge lengths. We obtain an asymptotic for the number of elements in a fixed conjugacy class for which the associated displacement of a given base vertex in the universal covering tree is at most T. Under a mild extra assumption we also obtain a polynomial error term.