Relationship between chromatin structure and sensitivity to molecularly targeted auger electron radiation therapy

Purpose: The open structure of euchromatin renders it susceptible to DNA damage by ionizing radiation (IR) compared with compact heterochromatin. The effect of chromatin configuration on the efficacy of Auger electron radiotherapy was investigated. Methods and Materials: Chromatin structure was alte...

Full description

Bibliographic Details
Main Authors: Terry, S, Vallis, K
Format: Journal article
Language:English
Published: 2012
_version_ 1826260766948327424
author Terry, S
Vallis, K
author_facet Terry, S
Vallis, K
author_sort Terry, S
collection OXFORD
description Purpose: The open structure of euchromatin renders it susceptible to DNA damage by ionizing radiation (IR) compared with compact heterochromatin. The effect of chromatin configuration on the efficacy of Auger electron radiotherapy was investigated. Methods and Materials: Chromatin structure was altered in MDA-MB-468 and 231-H2N human breast cancer cells by suberoylanilide hydroxamic acid (SAHA), 5-aza-2-deoxycytidine, or hypertonic treatment. The extent and duration of chromatin structural changes were evaluated using the micrococcal nuclease assay. DNA damage (γH2AX assay) and clonogenic survival were evaluated after exposure to 111In-DTPA-hEGF, an Auger electron-emitting radiopharmaceutical, or IR. The intracellular distribution of 111In-DTPA-hEGF after chromatin modification was investigated in cell fractionation experiments. Results: Chromatin remained condensed for up to 20 minutes after NaCl and in a relaxed state 24 hours after SAHA treatment. The number of γH2AX foci per cell was greater in MDA-MB-468 and 231-H2N cells after IR (0.5 Gy) plus SAHA (1 μM) compared with IR alone (16 ± 0.6 and 14 ± 0.3 vs. 12 ± 0.4 and 11 ± 0.2, respectively). More γH2AX foci were observed in MDA-MB-468 and 231-H2N cells exposed to 111In-DTPA-hEGF (6 MBq/μg) plus SAHA vs. 111In-DTPA- hEGF alone (11 ± 0.3 and 12 ± 0.7 vs. 9 ± 0.4 and 7 ± 0.3, respectively). 5-aza-2-deoxycytidine enhanced the DNA damage caused by IR and 111In-DTPA-hEGF. Clonogenic survival was reduced in MDA-MB-468 and 231-H2N cells after IR (6 Gy) plus SAHA (1 μM) vs. IR alone (0.6% ± 0.01 and 0.3% ± 0.2 vs. 5.8% ± 0.2 and 2% ± 0.1, respectively) and after 111In-DTPA-hEGF plus SAHA compared to 111In-DTPA-hEGF alone (21% ± 0.4% and 19% ± 4.6 vs. 33% ± 2.3 and 32% ± 3.7). SAHA did not affect 111In-DTPA- hEGF nuclear localization. Hypertonic treatment resulted in fewer γH2AX foci per cell after IR and 111In-DTPA-hEGF compared to controls but did not significantly alter clonogenic survival. Conclusions: Chromatin structure affects DNA damage and cell survival after exposure to Auger electron radiation. © 2012 Elsevier Inc.
first_indexed 2024-03-06T19:10:55Z
format Journal article
id oxford-uuid:16bcdcea-c709-4976-b873-b7b72783597c
institution University of Oxford
language English
last_indexed 2024-03-06T19:10:55Z
publishDate 2012
record_format dspace
spelling oxford-uuid:16bcdcea-c709-4976-b873-b7b72783597c2022-03-26T10:33:03ZRelationship between chromatin structure and sensitivity to molecularly targeted auger electron radiation therapyJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:16bcdcea-c709-4976-b873-b7b72783597cEnglishSymplectic Elements at Oxford2012Terry, SVallis, KPurpose: The open structure of euchromatin renders it susceptible to DNA damage by ionizing radiation (IR) compared with compact heterochromatin. The effect of chromatin configuration on the efficacy of Auger electron radiotherapy was investigated. Methods and Materials: Chromatin structure was altered in MDA-MB-468 and 231-H2N human breast cancer cells by suberoylanilide hydroxamic acid (SAHA), 5-aza-2-deoxycytidine, or hypertonic treatment. The extent and duration of chromatin structural changes were evaluated using the micrococcal nuclease assay. DNA damage (γH2AX assay) and clonogenic survival were evaluated after exposure to 111In-DTPA-hEGF, an Auger electron-emitting radiopharmaceutical, or IR. The intracellular distribution of 111In-DTPA-hEGF after chromatin modification was investigated in cell fractionation experiments. Results: Chromatin remained condensed for up to 20 minutes after NaCl and in a relaxed state 24 hours after SAHA treatment. The number of γH2AX foci per cell was greater in MDA-MB-468 and 231-H2N cells after IR (0.5 Gy) plus SAHA (1 μM) compared with IR alone (16 ± 0.6 and 14 ± 0.3 vs. 12 ± 0.4 and 11 ± 0.2, respectively). More γH2AX foci were observed in MDA-MB-468 and 231-H2N cells exposed to 111In-DTPA-hEGF (6 MBq/μg) plus SAHA vs. 111In-DTPA- hEGF alone (11 ± 0.3 and 12 ± 0.7 vs. 9 ± 0.4 and 7 ± 0.3, respectively). 5-aza-2-deoxycytidine enhanced the DNA damage caused by IR and 111In-DTPA-hEGF. Clonogenic survival was reduced in MDA-MB-468 and 231-H2N cells after IR (6 Gy) plus SAHA (1 μM) vs. IR alone (0.6% ± 0.01 and 0.3% ± 0.2 vs. 5.8% ± 0.2 and 2% ± 0.1, respectively) and after 111In-DTPA-hEGF plus SAHA compared to 111In-DTPA-hEGF alone (21% ± 0.4% and 19% ± 4.6 vs. 33% ± 2.3 and 32% ± 3.7). SAHA did not affect 111In-DTPA- hEGF nuclear localization. Hypertonic treatment resulted in fewer γH2AX foci per cell after IR and 111In-DTPA-hEGF compared to controls but did not significantly alter clonogenic survival. Conclusions: Chromatin structure affects DNA damage and cell survival after exposure to Auger electron radiation. © 2012 Elsevier Inc.
spellingShingle Terry, S
Vallis, K
Relationship between chromatin structure and sensitivity to molecularly targeted auger electron radiation therapy
title Relationship between chromatin structure and sensitivity to molecularly targeted auger electron radiation therapy
title_full Relationship between chromatin structure and sensitivity to molecularly targeted auger electron radiation therapy
title_fullStr Relationship between chromatin structure and sensitivity to molecularly targeted auger electron radiation therapy
title_full_unstemmed Relationship between chromatin structure and sensitivity to molecularly targeted auger electron radiation therapy
title_short Relationship between chromatin structure and sensitivity to molecularly targeted auger electron radiation therapy
title_sort relationship between chromatin structure and sensitivity to molecularly targeted auger electron radiation therapy
work_keys_str_mv AT terrys relationshipbetweenchromatinstructureandsensitivitytomolecularlytargetedaugerelectronradiationtherapy
AT vallisk relationshipbetweenchromatinstructureandsensitivitytomolecularlytargetedaugerelectronradiationtherapy