Kummer's conjecture for cubic Gauss sums

Let $S(X,l)=\sum_{N(c)\leq X}\tilde{g}(c)\Lambda(c)(\frac{c}{|c|})^l$ where $\tilde{g}(c)$ is the normalized cubic Gauss sum for an integer $c\equiv 1\pmod{3}$ of the field $\mathbb{Q}(\sqrt{-3})$. It is shown that $S(X,l)\ll_{\varepsilon} X^{5/6+\ep}+|l|X^{3/4+\varepsilon}$, for every $l\in\mathbb{...

Full description

Bibliographic Details
Main Author: Heath-Brown, D
Format: Journal article
Published: 2000
_version_ 1797055456917585920
author Heath-Brown, D
author_facet Heath-Brown, D
author_sort Heath-Brown, D
collection OXFORD
description Let $S(X,l)=\sum_{N(c)\leq X}\tilde{g}(c)\Lambda(c)(\frac{c}{|c|})^l$ where $\tilde{g}(c)$ is the normalized cubic Gauss sum for an integer $c\equiv 1\pmod{3}$ of the field $\mathbb{Q}(\sqrt{-3})$. It is shown that $S(X,l)\ll_{\varepsilon} X^{5/6+\ep}+|l|X^{3/4+\varepsilon}$, for every $l\in\mathbb{Z}$ and any $\varepsilon>0$. This improves on the estimate established by Heath-Brown and Patterson in demonstrating the uniform distribution of the cubic Gauss sums around the unit circle. When $l=0$ it is conjectured that the above sum is asymptotically of order $X^{5/6}$, so that the upper bound is essentially best possible. The proof uses a cubic analogue of the author's mean value estimate for quadratic character sums.
first_indexed 2024-03-06T19:11:00Z
format Journal article
id oxford-uuid:16c3966e-61cb-499d-839c-559b3794fcff
institution University of Oxford
last_indexed 2024-03-06T19:11:00Z
publishDate 2000
record_format dspace
spelling oxford-uuid:16c3966e-61cb-499d-839c-559b3794fcff2022-03-26T10:33:13ZKummer's conjecture for cubic Gauss sumsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:16c3966e-61cb-499d-839c-559b3794fcffMathematical Institute - ePrints2000Heath-Brown, DLet $S(X,l)=\sum_{N(c)\leq X}\tilde{g}(c)\Lambda(c)(\frac{c}{|c|})^l$ where $\tilde{g}(c)$ is the normalized cubic Gauss sum for an integer $c\equiv 1\pmod{3}$ of the field $\mathbb{Q}(\sqrt{-3})$. It is shown that $S(X,l)\ll_{\varepsilon} X^{5/6+\ep}+|l|X^{3/4+\varepsilon}$, for every $l\in\mathbb{Z}$ and any $\varepsilon>0$. This improves on the estimate established by Heath-Brown and Patterson in demonstrating the uniform distribution of the cubic Gauss sums around the unit circle. When $l=0$ it is conjectured that the above sum is asymptotically of order $X^{5/6}$, so that the upper bound is essentially best possible. The proof uses a cubic analogue of the author's mean value estimate for quadratic character sums.
spellingShingle Heath-Brown, D
Kummer's conjecture for cubic Gauss sums
title Kummer's conjecture for cubic Gauss sums
title_full Kummer's conjecture for cubic Gauss sums
title_fullStr Kummer's conjecture for cubic Gauss sums
title_full_unstemmed Kummer's conjecture for cubic Gauss sums
title_short Kummer's conjecture for cubic Gauss sums
title_sort kummer s conjecture for cubic gauss sums
work_keys_str_mv AT heathbrownd kummersconjectureforcubicgausssums