Federated contrastive learning for decentralized unlabeled medical images
A label-efficient paradigm in computer vision is based on self-supervised contrastive pre-training on unlabeled data followed by fine-tuning with a small number of labels. Making practical use of a federated computing environment in the clinical domain and learning on medical images poses specific c...
المؤلفون الرئيسيون: | Dong, N, Voiculescu, ID |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Springer
2021
|
مواد مشابهة
-
Federated partially supervised learning with limited decentralized medical images
حسب: Dong, N, وآخرون
منشور في: (2022) -
Learning underrepresented classes from decentralized partially labeled medical images
حسب: Dong, N, وآخرون
منشور في: (2022) -
Expand and Shrink: Federated Learning with Unlabeled Data Using Clustering
حسب: Ajit Kumar, وآخرون
منشور في: (2023-11-01) -
Triple-view feature learning for medical image segmentation
حسب: Wang, Z, وآخرون
منشور في: (2022) -
Overcoming Client Data Deficiency in Federated Learning by Exploiting Unlabeled Data on the Server
حسب: Jae-Min Park, وآخرون
منشور في: (2024-01-01)