Towards the engineering of a Quantum Key Distribution receiver robust to ambient light

Quantum Key Distribution (QKD) has the potential to secure indoor optical wireless links. In a typical room scenario, an indoor optical wireless link will have a transmitter on the ceiling and a receiver on a desk. Ambient light from room (typically LED) lighting on the ceiling and sunlight coming t...

Full description

Bibliographic Details
Main Authors: Lee, V, Schreier, A, Faulkner, G, O'Brien, D
Format: Conference item
Language:English
Published: Society of Photo-Optical Instrumentation Engineers 2023
_version_ 1797108481101135872
author Lee, V
Schreier, A
Faulkner, G
O'Brien, D
author_facet Lee, V
Schreier, A
Faulkner, G
O'Brien, D
author_sort Lee, V
collection OXFORD
description Quantum Key Distribution (QKD) has the potential to secure indoor optical wireless links. In a typical room scenario, an indoor optical wireless link will have a transmitter on the ceiling and a receiver on a desk. Ambient light from room (typically LED) lighting on the ceiling and sunlight coming through the windows present a challenging environment for free-space QKD links to operate, and a key challenge is to mitigate the noise induced by ambient light, particularly sunlight. A combination of spectral and spatial filtering can be used to reduce the effect of ambient light, with a narrowband optical filter typically used. Moreover, the wavelength of operation is key to further reduce the impact of ambient light. Wavelengths in ‘quiet’ regions of the solar spectrum, such as the atmospheric absorption bands, are promising candidates. We are currently working on a system that operates at 1370 nm, where water and carbon dioxide absorption band in the atmosphere attenuate the solar spectrum substantially. This paper reports the design and modelling of the system, with a series of validation measurements to characterise the effect of solar radiation on a typical photon-counting detector as would be used in a QKD system. The aim of this work is to show the feasibility of the wavelength region around 1370 nm as a necessary step towards a low noise QKD receiver for indoor optical wireless links in a practical environment.
first_indexed 2024-03-07T07:29:52Z
format Conference item
id oxford-uuid:16d6c389-6d9b-4272-917a-0ce2d9f53e9a
institution University of Oxford
language English
last_indexed 2024-03-07T07:29:52Z
publishDate 2023
publisher Society of Photo-Optical Instrumentation Engineers
record_format dspace
spelling oxford-uuid:16d6c389-6d9b-4272-917a-0ce2d9f53e9a2023-01-16T09:38:56ZTowards the engineering of a Quantum Key Distribution receiver robust to ambient lightConference itemhttp://purl.org/coar/resource_type/c_5794uuid:16d6c389-6d9b-4272-917a-0ce2d9f53e9aEnglishSymplectic ElementsSociety of Photo-Optical Instrumentation Engineers2023Lee, VSchreier, AFaulkner, GO'Brien, DQuantum Key Distribution (QKD) has the potential to secure indoor optical wireless links. In a typical room scenario, an indoor optical wireless link will have a transmitter on the ceiling and a receiver on a desk. Ambient light from room (typically LED) lighting on the ceiling and sunlight coming through the windows present a challenging environment for free-space QKD links to operate, and a key challenge is to mitigate the noise induced by ambient light, particularly sunlight. A combination of spectral and spatial filtering can be used to reduce the effect of ambient light, with a narrowband optical filter typically used. Moreover, the wavelength of operation is key to further reduce the impact of ambient light. Wavelengths in ‘quiet’ regions of the solar spectrum, such as the atmospheric absorption bands, are promising candidates. We are currently working on a system that operates at 1370 nm, where water and carbon dioxide absorption band in the atmosphere attenuate the solar spectrum substantially. This paper reports the design and modelling of the system, with a series of validation measurements to characterise the effect of solar radiation on a typical photon-counting detector as would be used in a QKD system. The aim of this work is to show the feasibility of the wavelength region around 1370 nm as a necessary step towards a low noise QKD receiver for indoor optical wireless links in a practical environment.
spellingShingle Lee, V
Schreier, A
Faulkner, G
O'Brien, D
Towards the engineering of a Quantum Key Distribution receiver robust to ambient light
title Towards the engineering of a Quantum Key Distribution receiver robust to ambient light
title_full Towards the engineering of a Quantum Key Distribution receiver robust to ambient light
title_fullStr Towards the engineering of a Quantum Key Distribution receiver robust to ambient light
title_full_unstemmed Towards the engineering of a Quantum Key Distribution receiver robust to ambient light
title_short Towards the engineering of a Quantum Key Distribution receiver robust to ambient light
title_sort towards the engineering of a quantum key distribution receiver robust to ambient light
work_keys_str_mv AT leev towardstheengineeringofaquantumkeydistributionreceiverrobusttoambientlight
AT schreiera towardstheengineeringofaquantumkeydistributionreceiverrobusttoambientlight
AT faulknerg towardstheengineeringofaquantumkeydistributionreceiverrobusttoambientlight
AT obriend towardstheengineeringofaquantumkeydistributionreceiverrobusttoambientlight