Uncertainty estimates as data selection criteria to boost omni-supervised learning
For many medical applications, large quantities of imaging data are routinely obtained but it can be difficult and time-consuming to obtain high-quality labels for that data. We propose a novel uncertainty-based method to improve the performance of segmentation networks when limited manual labels ar...
Հիմնական հեղինակներ: | Venturini, L, Papageorghiou, AT, Noble, JA, Namburete, AIL |
---|---|
Ձևաչափ: | Conference item |
Լեզու: | English |
Հրապարակվել է: |
Springer Nature
2020
|
Նմանատիպ նյութեր
-
Self-supervised ultrasound to MRI fetal brain image synthesis
: Jiao, J, և այլն
Հրապարակվել է: (2020) -
Omni-supervised learning: Scaling up to large unlabelled medical datasets
: Huang, R, և այլն
Հրապարակվել է: (2018) -
Anatomy-aware self-supervised fetal MRI synthesis from unpaired ultrasound images
: Jiao, J, և այլն
Հրապարակվել է: (2019) -
Multi-task CNN for structural semantic segmentation in 3D fetal brain ultrasound
: Venturini, L, և այլն
Հրապարակվել է: (2020) -
Fully-automated alignment of 3D fetal brain ultrasound to a canonical reference space using multi-task learning.
: Namburete, AIL, և այլն
Հրապարակվել է: (2018)