Uncertainty estimates as data selection criteria to boost omni-supervised learning
For many medical applications, large quantities of imaging data are routinely obtained but it can be difficult and time-consuming to obtain high-quality labels for that data. We propose a novel uncertainty-based method to improve the performance of segmentation networks when limited manual labels ar...
Үндсэн зохиолчид: | Venturini, L, Papageorghiou, AT, Noble, JA, Namburete, AIL |
---|---|
Формат: | Conference item |
Хэл сонгох: | English |
Хэвлэсэн: |
Springer Nature
2020
|
Ижил төстэй зүйлс
-
Self-supervised ultrasound to MRI fetal brain image synthesis
-н: Jiao, J, зэрэг
Хэвлэсэн: (2020) -
Omni-supervised learning: Scaling up to large unlabelled medical datasets
-н: Huang, R, зэрэг
Хэвлэсэн: (2018) -
Anatomy-aware self-supervised fetal MRI synthesis from unpaired ultrasound images
-н: Jiao, J, зэрэг
Хэвлэсэн: (2019) -
Multi-task CNN for structural semantic segmentation in 3D fetal brain ultrasound
-н: Venturini, L, зэрэг
Хэвлэсэн: (2020) -
Fully-automated alignment of 3D fetal brain ultrasound to a canonical reference space using multi-task learning.
-н: Namburete, AIL, зэрэг
Хэвлэсэн: (2018)