Uncertainty estimates as data selection criteria to boost omni-supervised learning
For many medical applications, large quantities of imaging data are routinely obtained but it can be difficult and time-consuming to obtain high-quality labels for that data. We propose a novel uncertainty-based method to improve the performance of segmentation networks when limited manual labels ar...
Những tác giả chính: | Venturini, L, Papageorghiou, AT, Noble, JA, Namburete, AIL |
---|---|
Định dạng: | Conference item |
Ngôn ngữ: | English |
Được phát hành: |
Springer Nature
2020
|
Những quyển sách tương tự
-
Self-supervised ultrasound to MRI fetal brain image synthesis
Bằng: Jiao, J, et al.
Được phát hành: (2020) -
Omni-supervised learning: Scaling up to large unlabelled medical datasets
Bằng: Huang, R, et al.
Được phát hành: (2018) -
Anatomy-aware self-supervised fetal MRI synthesis from unpaired ultrasound images
Bằng: Jiao, J, et al.
Được phát hành: (2019) -
Multi-task CNN for structural semantic segmentation in 3D fetal brain ultrasound
Bằng: Venturini, L, et al.
Được phát hành: (2020) -
Fully-automated alignment of 3D fetal brain ultrasound to a canonical reference space using multi-task learning.
Bằng: Namburete, AIL, et al.
Được phát hành: (2018)