Faithful inversion of generative models for effective amortized inference
Inference amortization methods share information across multiple posteriorinference problems, allowing each to be carried out more efficiently. Generally, they require the inversion of the dependency structure in the generative model, as the modeller must learn a mapping from observations to distrib...
主要な著者: | Webb, S, Golinski, A, Zinkov, R, Narayanaswamy, S, Rainforth, T, Teh, Y, Wood, F |
---|---|
フォーマット: | Conference item |
出版事項: |
Curran Associates
2019
|
類似資料
-
Amortized Monte Carlo integration
著者:: Goliński, A, 等
出版事項: (2019) -
Amortized rejection sampling in universal probabilistic programming
著者:: Naderiparizi, S, 等
出版事項: (2022) -
Amortized inference and model learning for probabilistic programming
著者:: Le, TA
出版事項: (2019) -
Kilonova Spectral Inverse Modelling with Simulation-based Inference: An Amortized Neural Posterior Estimation Analysis
著者:: P. Darc, 等
出版事項: (2024-01-01) -
Target–aware Bayesian inference: how to beat optimal conventional estimators
著者:: Rainforth, T, 等
出版事項: (2020)