Vascular endothelial growth factor signalling in endothelial cell survival: a role for NFkappaB.

Angiogenesis is the development of blood capillaries from pre-existing vessels. Vascular endothelial growth factor (VEGF) is a key regulator of vessel growth and regression, and acts as an endothelial survival factor by protecting endothelial cells from apoptosis. Many genes involved in cell prolife...

Popoln opis

Bibliografske podrobnosti
Main Authors: Grosjean, J, Kiriakidis, S, Reilly, K, Feldmann, M, Paleolog, E
Format: Journal article
Jezik:English
Izdano: 2006
_version_ 1826261120409665536
author Grosjean, J
Kiriakidis, S
Reilly, K
Feldmann, M
Paleolog, E
author_facet Grosjean, J
Kiriakidis, S
Reilly, K
Feldmann, M
Paleolog, E
author_sort Grosjean, J
collection OXFORD
description Angiogenesis is the development of blood capillaries from pre-existing vessels. Vascular endothelial growth factor (VEGF) is a key regulator of vessel growth and regression, and acts as an endothelial survival factor by protecting endothelial cells from apoptosis. Many genes involved in cell proliferation and apoptosis are regulated by the nuclear factor kappa B (NFkappaB) transcription factor family. This study aimed to address the hypothesis that VEGF-mediated survival effects on endothelium involve NFkappaB. Using an NFkappaB-luciferase reporter adenovirus, we observed activation of NFkappaB following VEGF treatment of human umbilical vein endothelial cells. This was confirmed using electrophoretic mobility shift assay and found to involve nuclear translocation of NFkappaB sub-unit p65. However, NFkappaB activation occurred without degradation of inhibitory IkappaB proteins (IkappaBalpha, IkappaBbeta, and IkappaBepsilon). Instead, tyrosine phosphorylation of IkappaBalpha was observed following VEGF treatment, suggesting NFkappaB activation was mediated by degradation-independent dissociation of IkappaBalpha from NFkappaB. Adenovirus-mediated over-expression of either native IkappaBalpha, or of IkappaBalpha in which tyrosine residue 42 was mutated to phenylalanine, inhibited induction of NFkappaB-dependent luciferase activity in response to VEGF. Furthermore, VEGF-induced upregulation of mRNA for the anti-apoptotic protein Bcl-2 and cell survival following serum withdrawal was reduced following IkappaBalpha over-expression. This study highlights that different molecular mechanisms of NFkappaB activation may be involved downstream of stimuli which activate the endothelial lining of blood vessels.
first_indexed 2024-03-06T19:16:35Z
format Journal article
id oxford-uuid:18997a8b-c562-426c-802c-3e94a1784a22
institution University of Oxford
language English
last_indexed 2024-03-06T19:16:35Z
publishDate 2006
record_format dspace
spelling oxford-uuid:18997a8b-c562-426c-802c-3e94a1784a222022-03-26T10:44:06ZVascular endothelial growth factor signalling in endothelial cell survival: a role for NFkappaB.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:18997a8b-c562-426c-802c-3e94a1784a22EnglishSymplectic Elements at Oxford2006Grosjean, JKiriakidis, SReilly, KFeldmann, MPaleolog, EAngiogenesis is the development of blood capillaries from pre-existing vessels. Vascular endothelial growth factor (VEGF) is a key regulator of vessel growth and regression, and acts as an endothelial survival factor by protecting endothelial cells from apoptosis. Many genes involved in cell proliferation and apoptosis are regulated by the nuclear factor kappa B (NFkappaB) transcription factor family. This study aimed to address the hypothesis that VEGF-mediated survival effects on endothelium involve NFkappaB. Using an NFkappaB-luciferase reporter adenovirus, we observed activation of NFkappaB following VEGF treatment of human umbilical vein endothelial cells. This was confirmed using electrophoretic mobility shift assay and found to involve nuclear translocation of NFkappaB sub-unit p65. However, NFkappaB activation occurred without degradation of inhibitory IkappaB proteins (IkappaBalpha, IkappaBbeta, and IkappaBepsilon). Instead, tyrosine phosphorylation of IkappaBalpha was observed following VEGF treatment, suggesting NFkappaB activation was mediated by degradation-independent dissociation of IkappaBalpha from NFkappaB. Adenovirus-mediated over-expression of either native IkappaBalpha, or of IkappaBalpha in which tyrosine residue 42 was mutated to phenylalanine, inhibited induction of NFkappaB-dependent luciferase activity in response to VEGF. Furthermore, VEGF-induced upregulation of mRNA for the anti-apoptotic protein Bcl-2 and cell survival following serum withdrawal was reduced following IkappaBalpha over-expression. This study highlights that different molecular mechanisms of NFkappaB activation may be involved downstream of stimuli which activate the endothelial lining of blood vessels.
spellingShingle Grosjean, J
Kiriakidis, S
Reilly, K
Feldmann, M
Paleolog, E
Vascular endothelial growth factor signalling in endothelial cell survival: a role for NFkappaB.
title Vascular endothelial growth factor signalling in endothelial cell survival: a role for NFkappaB.
title_full Vascular endothelial growth factor signalling in endothelial cell survival: a role for NFkappaB.
title_fullStr Vascular endothelial growth factor signalling in endothelial cell survival: a role for NFkappaB.
title_full_unstemmed Vascular endothelial growth factor signalling in endothelial cell survival: a role for NFkappaB.
title_short Vascular endothelial growth factor signalling in endothelial cell survival: a role for NFkappaB.
title_sort vascular endothelial growth factor signalling in endothelial cell survival a role for nfkappab
work_keys_str_mv AT grosjeanj vascularendothelialgrowthfactorsignallinginendothelialcellsurvivalarolefornfkappab
AT kiriakidiss vascularendothelialgrowthfactorsignallinginendothelialcellsurvivalarolefornfkappab
AT reillyk vascularendothelialgrowthfactorsignallinginendothelialcellsurvivalarolefornfkappab
AT feldmannm vascularendothelialgrowthfactorsignallinginendothelialcellsurvivalarolefornfkappab
AT paleologe vascularendothelialgrowthfactorsignallinginendothelialcellsurvivalarolefornfkappab