Combined support vector novelty detection for multi-channel combustion data
Multi-channel combustion data, consisting of gas pressure and two combustion chamber luminosity measurements, are investigated in the prediction of combustion instability. Wavelet analysis is used for feature extraction. A SVM approach is applied for novelty detection and the construction of a model...
主要な著者: | Clifton, L, Yin, H, Clifton, D, Zhang, Y |
---|---|
フォーマット: | Journal article |
出版事項: |
IEEE
2007
|
類似資料
-
Probabilistic novelty detection with support vector machines
著者:: Clifton, L, 等
出版事項: (2014) -
A review of novelty detection
著者:: Pimentel, M, 等
出版事項: (2014) -
Automated novelty detection in industrial systems
著者:: Clifton, D, 等
出版事項: (2008) -
An extreme function theory for novelty detection
著者:: Clifton, D, 等
出版事項: (2012) -
A framework for novelty detection in jet engine vibration data
著者:: Clifton, D, 等
出版事項: (2007)