Variability in the analysis of a single neuroimaging dataset by many teams
Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypo...
Main Authors: | , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Nature Research
2020
|
Subjects: |
_version_ | 1826261163986386944 |
---|---|
author | Botvinik-Nezer, R Holzmeister, F Camerer, CF Bowring, A Demetriou, L Nichols, TE |
author_facet | Botvinik-Nezer, R Holzmeister, F Camerer, CF Bowring, A Demetriou, L Nichols, TE |
author_sort | Botvinik-Nezer, R |
collection | OXFORD |
description | Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses1. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset2-5. Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed. |
first_indexed | 2024-03-06T19:17:13Z |
format | Journal article |
id | oxford-uuid:18d15c19-3433-4777-9ad3-436a02a50ef5 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T19:17:13Z |
publishDate | 2020 |
publisher | Nature Research |
record_format | dspace |
spelling | oxford-uuid:18d15c19-3433-4777-9ad3-436a02a50ef52022-03-26T10:45:29ZVariability in the analysis of a single neuroimaging dataset by many teamsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:18d15c19-3433-4777-9ad3-436a02a50ef5Decision makingHuman behaviourDecisionScientific communityEnglishSymplectic ElementsNature Research2020Botvinik-Nezer, RHolzmeister, FCamerer, CFBowring, ADemetriou, LNichols, TEData analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses1. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset2-5. Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed. |
spellingShingle | Decision making Human behaviour Decision Scientific community Botvinik-Nezer, R Holzmeister, F Camerer, CF Bowring, A Demetriou, L Nichols, TE Variability in the analysis of a single neuroimaging dataset by many teams |
title | Variability in the analysis of a single neuroimaging dataset by many teams |
title_full | Variability in the analysis of a single neuroimaging dataset by many teams |
title_fullStr | Variability in the analysis of a single neuroimaging dataset by many teams |
title_full_unstemmed | Variability in the analysis of a single neuroimaging dataset by many teams |
title_short | Variability in the analysis of a single neuroimaging dataset by many teams |
title_sort | variability in the analysis of a single neuroimaging dataset by many teams |
topic | Decision making Human behaviour Decision Scientific community |
work_keys_str_mv | AT botviniknezerr variabilityintheanalysisofasingleneuroimagingdatasetbymanyteams AT holzmeisterf variabilityintheanalysisofasingleneuroimagingdatasetbymanyteams AT camerercf variabilityintheanalysisofasingleneuroimagingdatasetbymanyteams AT bowringa variabilityintheanalysisofasingleneuroimagingdatasetbymanyteams AT demetrioul variabilityintheanalysisofasingleneuroimagingdatasetbymanyteams AT nicholste variabilityintheanalysisofasingleneuroimagingdatasetbymanyteams |