Hypergraph convolution and hypergraph attention
Recently, graph neural networks have attracted great attention and achieved prominent performance in various research fields. Most of those algorithms have assumed pairwise relationships of objects of interest. However, in many real applications, the relationships between objects are in higher-order...
Egile Nagusiak: | Bai, S, Zhang, F, Torr, PHS |
---|---|
Formatua: | Journal article |
Hizkuntza: | English |
Argitaratua: |
Elseveir
2020
|
Antzeko izenburuak
-
Hypergraph-Mlp: learning on hypergraphs without message passing
nork: Tang, B, et al.
Argitaratua: (2024) -
Intersections of hypergraphs
nork: Bollobas, B, et al.
Argitaratua: (2014) -
Quasirandomness in hypergraphs
nork: Aigner-Horev, E, et al.
Argitaratua: (2017) -
Hypergraph Transversals
nork: Gottlob, G
Argitaratua: (2004) -
Quasirandomness in hypergraphs
nork: Aigner-Horev, E, et al.
Argitaratua: (2018)