Hypergraph convolution and hypergraph attention
Recently, graph neural networks have attracted great attention and achieved prominent performance in various research fields. Most of those algorithms have assumed pairwise relationships of objects of interest. However, in many real applications, the relationships between objects are in higher-order...
Κύριοι συγγραφείς: | Bai, S, Zhang, F, Torr, PHS |
---|---|
Μορφή: | Journal article |
Γλώσσα: | English |
Έκδοση: |
Elseveir
2020
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Link Prediction in Knowledge Hypergraph Combining Attention and Convolution Network
ανά: PANG Jun, XU Hao, QIN Hongchao, LIN Xiaoli, LIU Xiaoqi, WANG Guoren
Έκδοση: (2023-11-01) -
Decomposing hypergraphs into k-colorable hypergraphs
ανά: Gholamreza Omidi, κ.ά.
Έκδοση: (2014-06-01) -
An analytic approach to sparse hypergraphs: hypergraph removal
ανά: Henry Towsner
Έκδοση: (2018-01-01) -
Hypergraph and Uncertain Hypergraph Representation Learning Theory and Methods
ανά: Liyan Zhang, κ.ά.
Έκδοση: (2022-06-01) -
Hypergraph-Mlp: learning on hypergraphs without message passing
ανά: Tang, B, κ.ά.
Έκδοση: (2024)