Federated learning enables big data for rare cancer boundary detection

Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsmän: Pati, S, Baid, U, Edwards, B, Sheller, M, Wang, S-H, Reina, GA, Foley, P, Gruzdev, A, Karkada, D, Davatzikos, C, Sako, C, Ghodasara, S, Bilello, M, Mohan, S, Vollmuth, P, Brugnara, G, Preetha, CJ, Sahm, F, Maier-Hein, K, Zenk, M, Bendszus, M, Wick, W, Calabrese, E, Rudie, J, Villanueva-Meyer, J, Cha, S, Ingalhalikar, M, Jadhav, M, Pandey, U, Saini, J, Garrett, J, Larson, M, Jeraj, R, Currie, S, Frood, R, Fatania, K, Huang, RY, Chang, K, Balaña, C, Capellades, J, Puig, J, Trenkler, J, Pichler, J, Necker, G, Haunschmidt, A, Meckel, S, Shukla, G, Liem, S, Alexander, GS, Lombardo, J, Kamnitsas, K
Materialtyp: Journal article
Språk:English
Publicerad: Springer Nature 2022
_version_ 1826313244341436416
author Pati, S
Baid, U
Edwards, B
Sheller, M
Wang, S-H
Reina, GA
Foley, P
Gruzdev, A
Karkada, D
Davatzikos, C
Sako, C
Ghodasara, S
Bilello, M
Mohan, S
Vollmuth, P
Brugnara, G
Preetha, CJ
Sahm, F
Maier-Hein, K
Zenk, M
Bendszus, M
Wick, W
Calabrese, E
Rudie, J
Villanueva-Meyer, J
Cha, S
Ingalhalikar, M
Jadhav, M
Pandey, U
Saini, J
Garrett, J
Larson, M
Jeraj, R
Currie, S
Frood, R
Fatania, K
Huang, RY
Chang, K
Balaña, C
Capellades, J
Puig, J
Trenkler, J
Pichler, J
Necker, G
Haunschmidt, A
Meckel, S
Shukla, G
Liem, S
Alexander, GS
Lombardo, J
Kamnitsas, K
author_facet Pati, S
Baid, U
Edwards, B
Sheller, M
Wang, S-H
Reina, GA
Foley, P
Gruzdev, A
Karkada, D
Davatzikos, C
Sako, C
Ghodasara, S
Bilello, M
Mohan, S
Vollmuth, P
Brugnara, G
Preetha, CJ
Sahm, F
Maier-Hein, K
Zenk, M
Bendszus, M
Wick, W
Calabrese, E
Rudie, J
Villanueva-Meyer, J
Cha, S
Ingalhalikar, M
Jadhav, M
Pandey, U
Saini, J
Garrett, J
Larson, M
Jeraj, R
Currie, S
Frood, R
Fatania, K
Huang, RY
Chang, K
Balaña, C
Capellades, J
Puig, J
Trenkler, J
Pichler, J
Necker, G
Haunschmidt, A
Meckel, S
Shukla, G
Liem, S
Alexander, GS
Lombardo, J
Kamnitsas, K
author_sort Pati, S
collection OXFORD
description Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing.
first_indexed 2024-09-25T04:08:27Z
format Journal article
id oxford-uuid:193f0b7d-e9d1-460d-80e2-dbc7a12bdb3c
institution University of Oxford
language English
last_indexed 2024-09-25T04:08:27Z
publishDate 2022
publisher Springer Nature
record_format dspace
spelling oxford-uuid:193f0b7d-e9d1-460d-80e2-dbc7a12bdb3c2024-06-14T12:28:32ZFederated learning enables big data for rare cancer boundary detectionJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:193f0b7d-e9d1-460d-80e2-dbc7a12bdb3cEnglishSymplectic ElementsSpringer Nature2022Pati, SBaid, UEdwards, BSheller, MWang, S-HReina, GAFoley, PGruzdev, AKarkada, DDavatzikos, CSako, CGhodasara, SBilello, MMohan, SVollmuth, PBrugnara, GPreetha, CJSahm, FMaier-Hein, KZenk, MBendszus, MWick, WCalabrese, ERudie, JVillanueva-Meyer, JCha, SIngalhalikar, MJadhav, MPandey, USaini, JGarrett, JLarson, MJeraj, RCurrie, SFrood, RFatania, KHuang, RYChang, KBalaña, CCapellades, JPuig, JTrenkler, JPichler, JNecker, GHaunschmidt, AMeckel, SShukla, GLiem, SAlexander, GSLombardo, JKamnitsas, KAlthough machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing.
spellingShingle Pati, S
Baid, U
Edwards, B
Sheller, M
Wang, S-H
Reina, GA
Foley, P
Gruzdev, A
Karkada, D
Davatzikos, C
Sako, C
Ghodasara, S
Bilello, M
Mohan, S
Vollmuth, P
Brugnara, G
Preetha, CJ
Sahm, F
Maier-Hein, K
Zenk, M
Bendszus, M
Wick, W
Calabrese, E
Rudie, J
Villanueva-Meyer, J
Cha, S
Ingalhalikar, M
Jadhav, M
Pandey, U
Saini, J
Garrett, J
Larson, M
Jeraj, R
Currie, S
Frood, R
Fatania, K
Huang, RY
Chang, K
Balaña, C
Capellades, J
Puig, J
Trenkler, J
Pichler, J
Necker, G
Haunschmidt, A
Meckel, S
Shukla, G
Liem, S
Alexander, GS
Lombardo, J
Kamnitsas, K
Federated learning enables big data for rare cancer boundary detection
title Federated learning enables big data for rare cancer boundary detection
title_full Federated learning enables big data for rare cancer boundary detection
title_fullStr Federated learning enables big data for rare cancer boundary detection
title_full_unstemmed Federated learning enables big data for rare cancer boundary detection
title_short Federated learning enables big data for rare cancer boundary detection
title_sort federated learning enables big data for rare cancer boundary detection
work_keys_str_mv AT patis federatedlearningenablesbigdataforrarecancerboundarydetection
AT baidu federatedlearningenablesbigdataforrarecancerboundarydetection
AT edwardsb federatedlearningenablesbigdataforrarecancerboundarydetection
AT shellerm federatedlearningenablesbigdataforrarecancerboundarydetection
AT wangsh federatedlearningenablesbigdataforrarecancerboundarydetection
AT reinaga federatedlearningenablesbigdataforrarecancerboundarydetection
AT foleyp federatedlearningenablesbigdataforrarecancerboundarydetection
AT gruzdeva federatedlearningenablesbigdataforrarecancerboundarydetection
AT karkadad federatedlearningenablesbigdataforrarecancerboundarydetection
AT davatzikosc federatedlearningenablesbigdataforrarecancerboundarydetection
AT sakoc federatedlearningenablesbigdataforrarecancerboundarydetection
AT ghodasaras federatedlearningenablesbigdataforrarecancerboundarydetection
AT bilellom federatedlearningenablesbigdataforrarecancerboundarydetection
AT mohans federatedlearningenablesbigdataforrarecancerboundarydetection
AT vollmuthp federatedlearningenablesbigdataforrarecancerboundarydetection
AT brugnarag federatedlearningenablesbigdataforrarecancerboundarydetection
AT preethacj federatedlearningenablesbigdataforrarecancerboundarydetection
AT sahmf federatedlearningenablesbigdataforrarecancerboundarydetection
AT maierheink federatedlearningenablesbigdataforrarecancerboundarydetection
AT zenkm federatedlearningenablesbigdataforrarecancerboundarydetection
AT bendszusm federatedlearningenablesbigdataforrarecancerboundarydetection
AT wickw federatedlearningenablesbigdataforrarecancerboundarydetection
AT calabresee federatedlearningenablesbigdataforrarecancerboundarydetection
AT rudiej federatedlearningenablesbigdataforrarecancerboundarydetection
AT villanuevameyerj federatedlearningenablesbigdataforrarecancerboundarydetection
AT chas federatedlearningenablesbigdataforrarecancerboundarydetection
AT ingalhalikarm federatedlearningenablesbigdataforrarecancerboundarydetection
AT jadhavm federatedlearningenablesbigdataforrarecancerboundarydetection
AT pandeyu federatedlearningenablesbigdataforrarecancerboundarydetection
AT sainij federatedlearningenablesbigdataforrarecancerboundarydetection
AT garrettj federatedlearningenablesbigdataforrarecancerboundarydetection
AT larsonm federatedlearningenablesbigdataforrarecancerboundarydetection
AT jerajr federatedlearningenablesbigdataforrarecancerboundarydetection
AT curries federatedlearningenablesbigdataforrarecancerboundarydetection
AT froodr federatedlearningenablesbigdataforrarecancerboundarydetection
AT fataniak federatedlearningenablesbigdataforrarecancerboundarydetection
AT huangry federatedlearningenablesbigdataforrarecancerboundarydetection
AT changk federatedlearningenablesbigdataforrarecancerboundarydetection
AT balanac federatedlearningenablesbigdataforrarecancerboundarydetection
AT capelladesj federatedlearningenablesbigdataforrarecancerboundarydetection
AT puigj federatedlearningenablesbigdataforrarecancerboundarydetection
AT trenklerj federatedlearningenablesbigdataforrarecancerboundarydetection
AT pichlerj federatedlearningenablesbigdataforrarecancerboundarydetection
AT neckerg federatedlearningenablesbigdataforrarecancerboundarydetection
AT haunschmidta federatedlearningenablesbigdataforrarecancerboundarydetection
AT meckels federatedlearningenablesbigdataforrarecancerboundarydetection
AT shuklag federatedlearningenablesbigdataforrarecancerboundarydetection
AT liems federatedlearningenablesbigdataforrarecancerboundarydetection
AT alexandergs federatedlearningenablesbigdataforrarecancerboundarydetection
AT lombardoj federatedlearningenablesbigdataforrarecancerboundarydetection
AT kamnitsask federatedlearningenablesbigdataforrarecancerboundarydetection