Refinement for absolute pose regression with neural feature synthesis
Absolute Pose Regression (APR) methods use deep neural networks to directly regress camera poses from RGB images. Despite their advantages in inference speed and simplicity, these methods still fall short of the accuracy achieved by geometry-based techniques. To address this issue, we propose a new...
Κύριοι συγγραφείς: | Chen, S, Bhalgat, Y, Li, X, Bian, J, Li, K, Wang, Z, Prisacariu, V |
---|---|
Μορφή: | Internet publication |
Γλώσσα: | English |
Έκδοση: |
arXiv
2023
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Neural refinement for absolute pose regression with feature synthesis
ανά: Bhalgat, Y, κ.ά.
Έκδοση: (2024) -
DFNet: enhance absolute pose regression with direct feature matching
ανά: Chen, S, κ.ά.
Έκδοση: (2022) -
DFNet: enhance absolute pose regression with direct feature matching
ανά: Chen, S, κ.ά.
Έκδοση: (2022) -
Direct-PoseNet: Absolute pose regression with photometric consistency
ανά: Prisacariu, V, κ.ά.
Έκδοση: (2022) -
NoPe-NeRF: optimising neural radiance field with no pose prior
ανά: Bian, W, κ.ά.
Έκδοση: (2022)