Refinement for absolute pose regression with neural feature synthesis
Absolute Pose Regression (APR) methods use deep neural networks to directly regress camera poses from RGB images. Despite their advantages in inference speed and simplicity, these methods still fall short of the accuracy achieved by geometry-based techniques. To address this issue, we propose a new...
Autores principales: | Chen, S, Bhalgat, Y, Li, X, Bian, J, Li, K, Wang, Z, Prisacariu, V |
---|---|
Formato: | Internet publication |
Lenguaje: | English |
Publicado: |
arXiv
2023
|
Ejemplares similares
-
Neural refinement for absolute pose regression with feature synthesis
por: Bhalgat, Y, et al.
Publicado: (2024) -
DFNet: enhance absolute pose regression with direct feature matching
por: Chen, S, et al.
Publicado: (2022) -
DFNet: enhance absolute pose regression with direct feature matching
por: Chen, S, et al.
Publicado: (2022) -
Direct-PoseNet: Absolute pose regression with photometric consistency
por: Prisacariu, V, et al.
Publicado: (2022) -
NoPe-NeRF: optimising neural radiance field with no pose prior
por: Bian, W, et al.
Publicado: (2022)