Refinement for absolute pose regression with neural feature synthesis
Absolute Pose Regression (APR) methods use deep neural networks to directly regress camera poses from RGB images. Despite their advantages in inference speed and simplicity, these methods still fall short of the accuracy achieved by geometry-based techniques. To address this issue, we propose a new...
Auteurs principaux: | Chen, S, Bhalgat, Y, Li, X, Bian, J, Li, K, Wang, Z, Prisacariu, V |
---|---|
Format: | Internet publication |
Langue: | English |
Publié: |
arXiv
2023
|
Documents similaires
-
Neural refinement for absolute pose regression with feature synthesis
par: Bhalgat, Y, et autres
Publié: (2024) -
DFNet: enhance absolute pose regression with direct feature matching
par: Chen, S, et autres
Publié: (2022) -
DFNet: enhance absolute pose regression with direct feature matching
par: Chen, S, et autres
Publié: (2022) -
Direct-PoseNet: Absolute pose regression with photometric consistency
par: Prisacariu, V, et autres
Publié: (2022) -
NoPe-NeRF: optimising neural radiance field with no pose prior
par: Bian, W, et autres
Publié: (2022)