Refinement for absolute pose regression with neural feature synthesis
Absolute Pose Regression (APR) methods use deep neural networks to directly regress camera poses from RGB images. Despite their advantages in inference speed and simplicity, these methods still fall short of the accuracy achieved by geometry-based techniques. To address this issue, we propose a new...
主要な著者: | Chen, S, Bhalgat, Y, Li, X, Bian, J, Li, K, Wang, Z, Prisacariu, V |
---|---|
フォーマット: | Internet publication |
言語: | English |
出版事項: |
arXiv
2023
|
類似資料
-
Neural refinement for absolute pose regression with feature synthesis
著者:: Bhalgat, Y, 等
出版事項: (2024) -
DFNet: enhance absolute pose regression with direct feature matching
著者:: Chen, S, 等
出版事項: (2022) -
DFNet: enhance absolute pose regression with direct feature matching
著者:: Chen, S, 等
出版事項: (2022) -
Direct-PoseNet: Absolute pose regression with photometric consistency
著者:: Prisacariu, V, 等
出版事項: (2022) -
NoPe-NeRF: optimising neural radiance field with no pose prior
著者:: Bian, W, 等
出版事項: (2022)