Refinement for absolute pose regression with neural feature synthesis
Absolute Pose Regression (APR) methods use deep neural networks to directly regress camera poses from RGB images. Despite their advantages in inference speed and simplicity, these methods still fall short of the accuracy achieved by geometry-based techniques. To address this issue, we propose a new...
Үндсэн зохиолчид: | Chen, S, Bhalgat, Y, Li, X, Bian, J, Li, K, Wang, Z, Prisacariu, V |
---|---|
Формат: | Internet publication |
Хэл сонгох: | English |
Хэвлэсэн: |
arXiv
2023
|
Ижил төстэй зүйлс
-
Neural refinement for absolute pose regression with feature synthesis
-н: Bhalgat, Y, зэрэг
Хэвлэсэн: (2024) -
DFNet: enhance absolute pose regression with direct feature matching
-н: Chen, S, зэрэг
Хэвлэсэн: (2022) -
DFNet: enhance absolute pose regression with direct feature matching
-н: Chen, S, зэрэг
Хэвлэсэн: (2022) -
Direct-PoseNet: Absolute pose regression with photometric consistency
-н: Prisacariu, V, зэрэг
Хэвлэсэн: (2022) -
NoPe-NeRF: optimising neural radiance field with no pose prior
-н: Bian, W, зэрэг
Хэвлэсэн: (2022)