Refinement for absolute pose regression with neural feature synthesis
Absolute Pose Regression (APR) methods use deep neural networks to directly regress camera poses from RGB images. Despite their advantages in inference speed and simplicity, these methods still fall short of the accuracy achieved by geometry-based techniques. To address this issue, we propose a new...
Главные авторы: | Chen, S, Bhalgat, Y, Li, X, Bian, J, Li, K, Wang, Z, Prisacariu, V |
---|---|
Формат: | Internet publication |
Язык: | English |
Опубликовано: |
arXiv
2023
|
Схожие документы
-
Neural refinement for absolute pose regression with feature synthesis
по: Bhalgat, Y, и др.
Опубликовано: (2024) -
DFNet: enhance absolute pose regression with direct feature matching
по: Chen, S, и др.
Опубликовано: (2022) -
DFNet: enhance absolute pose regression with direct feature matching
по: Chen, S, и др.
Опубликовано: (2022) -
Direct-PoseNet: Absolute pose regression with photometric consistency
по: Prisacariu, V, и др.
Опубликовано: (2022) -
NoPe-NeRF: optimising neural radiance field with no pose prior
по: Bian, W, и др.
Опубликовано: (2022)