Refinement for absolute pose regression with neural feature synthesis
Absolute Pose Regression (APR) methods use deep neural networks to directly regress camera poses from RGB images. Despite their advantages in inference speed and simplicity, these methods still fall short of the accuracy achieved by geometry-based techniques. To address this issue, we propose a new...
Asıl Yazarlar: | Chen, S, Bhalgat, Y, Li, X, Bian, J, Li, K, Wang, Z, Prisacariu, V |
---|---|
Materyal Türü: | Internet publication |
Dil: | English |
Baskı/Yayın Bilgisi: |
arXiv
2023
|
Benzer Materyaller
-
Neural refinement for absolute pose regression with feature synthesis
Yazar:: Bhalgat, Y, ve diğerleri
Baskı/Yayın Bilgisi: (2024) -
DFNet: enhance absolute pose regression with direct feature matching
Yazar:: Chen, S, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
DFNet: enhance absolute pose regression with direct feature matching
Yazar:: Chen, S, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
Direct-PoseNet: Absolute pose regression with photometric consistency
Yazar:: Prisacariu, V, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
NoPe-NeRF: optimising neural radiance field with no pose prior
Yazar:: Bian, W, ve diğerleri
Baskı/Yayın Bilgisi: (2022)