Refinement for absolute pose regression with neural feature synthesis
Absolute Pose Regression (APR) methods use deep neural networks to directly regress camera poses from RGB images. Despite their advantages in inference speed and simplicity, these methods still fall short of the accuracy achieved by geometry-based techniques. To address this issue, we propose a new...
Những tác giả chính: | Chen, S, Bhalgat, Y, Li, X, Bian, J, Li, K, Wang, Z, Prisacariu, V |
---|---|
Định dạng: | Internet publication |
Ngôn ngữ: | English |
Được phát hành: |
arXiv
2023
|
Những quyển sách tương tự
-
Neural refinement for absolute pose regression with feature synthesis
Bằng: Bhalgat, Y, et al.
Được phát hành: (2024) -
DFNet: enhance absolute pose regression with direct feature matching
Bằng: Chen, S, et al.
Được phát hành: (2022) -
DFNet: enhance absolute pose regression with direct feature matching
Bằng: Chen, S, et al.
Được phát hành: (2022) -
Direct-PoseNet: Absolute pose regression with photometric consistency
Bằng: Prisacariu, V, et al.
Được phát hành: (2022) -
NoPe-NeRF: optimising neural radiance field with no pose prior
Bằng: Bian, W, et al.
Được phát hành: (2022)