Refinement for absolute pose regression with neural feature synthesis
Absolute Pose Regression (APR) methods use deep neural networks to directly regress camera poses from RGB images. Despite their advantages in inference speed and simplicity, these methods still fall short of the accuracy achieved by geometry-based techniques. To address this issue, we propose a new...
Main Authors: | Chen, S, Bhalgat, Y, Li, X, Bian, J, Li, K, Wang, Z, Prisacariu, V |
---|---|
格式: | Internet publication |
语言: | English |
出版: |
arXiv
2023
|
相似书籍
-
Neural refinement for absolute pose regression with feature synthesis
由: Bhalgat, Y, et al.
出版: (2024) -
DFNet: enhance absolute pose regression with direct feature matching
由: Chen, S, et al.
出版: (2022) -
DFNet: enhance absolute pose regression with direct feature matching
由: Chen, S, et al.
出版: (2022) -
Direct-PoseNet: Absolute pose regression with photometric consistency
由: Prisacariu, V, et al.
出版: (2022) -
NoPe-NeRF: optimising neural radiance field with no pose prior
由: Bian, W, et al.
出版: (2022)