Data for 'Hammond and Lewis: The rotational and divergent components of atmospheric circulation on tidally locked planets, Proc. Nat. Acad. Sci., 2021'

This archive contains the Python code used to analyse and plot the data in Hammond & Lewis 2021, "The rotational and divergent components of atmospheric circulation on tidally locked planets", as well as the data from the "terrestrial" simulation of the atmosphere of a rocky...

Full description

Bibliographic Details
Main Authors: Hammond, M, Lewis, N
Format: Dataset
Language:English
Published: University of Oxford 2021
Subjects:
Description
Summary:This archive contains the Python code used to analyse and plot the data in Hammond & Lewis 2021, "The rotational and divergent components of atmospheric circulation on tidally locked planets", as well as the data from the "terrestrial" simulation of the atmosphere of a rocky planet using the general circulation model ExoFMS. It contains three files: 1) HL21_plotter.ipynb This is a Jupyter notebook containing Python code. It reads the data from the ExoFMS simulation and finds its rotational and divergent parts. It then plots the figures used in Hammond & Lewis 2021. 2) data/rotdiv-terr-control-1000-2000_atmos_average_interp.nc The "terrestrial" simulation output, interpolated to uniform pressure levels. This is used to plot quantities such as velocity at a constant pressure. 3) data/rotdiv-terr-control-1000-2000_atmos_average.nc The "terrestrial" simulation output, on the raw model sigma-pressure levels. This is used to calculate the dry static energy budget. The paper also uses a "Hot Jupiter" simulation from the THOR GCM. This is from "THOR 2.0: Major Improvements to the Open-Source General Circulation Model" (Deitrick et al. 2020). The data is available on request to Russell Deitrick (russell.deitrick@csh.unibe.ch). The same analysis can be made using HL21_plotter.ipynb, with small modifications due to the different grid in THOR.