Kinetic and mechanistic investigations of hydrothermal transformations in zinc phosphates.

The room-temperature crystallization of [C(6)N(2)H(18)][Zn(HPO(4))(H(2)PO(4))(2)], an organically templated zinc phosphate containing [Zn(2)(HPO(4))(2)(H(2)PO(4))(4)](4)(-) molecular anions, and its transformation to compounds containing either one- or two-dimensional inorganic components, [C(6)N(2)...

Full description

Bibliographic Details
Main Authors: Norquist, A, O'Hare, D
Format: Journal article
Language:English
Published: 2004
_version_ 1797056643394961408
author Norquist, A
O'Hare, D
author_facet Norquist, A
O'Hare, D
author_sort Norquist, A
collection OXFORD
description The room-temperature crystallization of [C(6)N(2)H(18)][Zn(HPO(4))(H(2)PO(4))(2)], an organically templated zinc phosphate containing [Zn(2)(HPO(4))(2)(H(2)PO(4))(4)](4)(-) molecular anions, and its transformation to compounds containing either one- or two-dimensional inorganic components, [C(6)N(2)H(18)][Zn(3)(H(2)O)(4)(HPO(4))(4)], [C(4)N(2)H(12)][Zn(HPO(4))(2)(H(2)O)], or [C(3)N(2)H(6)][Zn(4)(OH)(PO(4))(3)], under hydrothermal conditions were studied in-situ using energy-dispersive X-ray diffraction. The ability to collect data during reactions in a large volume ( approximately 23 mL) Teflon-lined autoclave under real laboratory conditions has allowed for the elucidation of kinetic and mechanistic information. Kinetic data have been determined by monitoring changes in the integrated peak intensities of Bragg reflections and have been modeled using the Avrami-Erofe'ev expression. The crystallization of [C(6)N(2)H(18)][Zn(HPO(4))(H(2)PO(4))(2)] is a diffusion-controlled process, while nucleation is increasingly more important in determining the overall rate of the formation of [C(6)N(2)H(18)][Zn(3)(H(2)O)(4)(HPO(4))(4)], [C(4)N(2)H(12)][Zn(HPO(4))(2)(H(2)O)], and [C(3)N(2)H(6)][Zn(4)(OH)(PO(4))(3)]. The transformation of [C(6)N(2)H(18)][Zn(HPO(4))(H(2)PO(4))(2)] to [C(4)N(2)H(12)][Zn(HPO(4))(2)(H(2)O)] and [C(3)N(2)H(6)][Zn(4)(OH)(PO(4))(3)] occurs via a dissolution-reprecipitation mechanism, while the transformation to [C(6)N(2)H(18)][Zn(3)(H(2)O)(4)(HPO(4))(4)] may be the first observation of a direct topochemical conversion of one organically templated solid to another under hydrothermal conditions.
first_indexed 2024-03-06T19:25:30Z
format Journal article
id oxford-uuid:1b8f7af1-8260-4b69-887a-34425db8855c
institution University of Oxford
language English
last_indexed 2024-03-06T19:25:30Z
publishDate 2004
record_format dspace
spelling oxford-uuid:1b8f7af1-8260-4b69-887a-34425db8855c2022-03-26T11:01:05ZKinetic and mechanistic investigations of hydrothermal transformations in zinc phosphates.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:1b8f7af1-8260-4b69-887a-34425db8855cEnglishSymplectic Elements at Oxford2004Norquist, AO'Hare, DThe room-temperature crystallization of [C(6)N(2)H(18)][Zn(HPO(4))(H(2)PO(4))(2)], an organically templated zinc phosphate containing [Zn(2)(HPO(4))(2)(H(2)PO(4))(4)](4)(-) molecular anions, and its transformation to compounds containing either one- or two-dimensional inorganic components, [C(6)N(2)H(18)][Zn(3)(H(2)O)(4)(HPO(4))(4)], [C(4)N(2)H(12)][Zn(HPO(4))(2)(H(2)O)], or [C(3)N(2)H(6)][Zn(4)(OH)(PO(4))(3)], under hydrothermal conditions were studied in-situ using energy-dispersive X-ray diffraction. The ability to collect data during reactions in a large volume ( approximately 23 mL) Teflon-lined autoclave under real laboratory conditions has allowed for the elucidation of kinetic and mechanistic information. Kinetic data have been determined by monitoring changes in the integrated peak intensities of Bragg reflections and have been modeled using the Avrami-Erofe'ev expression. The crystallization of [C(6)N(2)H(18)][Zn(HPO(4))(H(2)PO(4))(2)] is a diffusion-controlled process, while nucleation is increasingly more important in determining the overall rate of the formation of [C(6)N(2)H(18)][Zn(3)(H(2)O)(4)(HPO(4))(4)], [C(4)N(2)H(12)][Zn(HPO(4))(2)(H(2)O)], and [C(3)N(2)H(6)][Zn(4)(OH)(PO(4))(3)]. The transformation of [C(6)N(2)H(18)][Zn(HPO(4))(H(2)PO(4))(2)] to [C(4)N(2)H(12)][Zn(HPO(4))(2)(H(2)O)] and [C(3)N(2)H(6)][Zn(4)(OH)(PO(4))(3)] occurs via a dissolution-reprecipitation mechanism, while the transformation to [C(6)N(2)H(18)][Zn(3)(H(2)O)(4)(HPO(4))(4)] may be the first observation of a direct topochemical conversion of one organically templated solid to another under hydrothermal conditions.
spellingShingle Norquist, A
O'Hare, D
Kinetic and mechanistic investigations of hydrothermal transformations in zinc phosphates.
title Kinetic and mechanistic investigations of hydrothermal transformations in zinc phosphates.
title_full Kinetic and mechanistic investigations of hydrothermal transformations in zinc phosphates.
title_fullStr Kinetic and mechanistic investigations of hydrothermal transformations in zinc phosphates.
title_full_unstemmed Kinetic and mechanistic investigations of hydrothermal transformations in zinc phosphates.
title_short Kinetic and mechanistic investigations of hydrothermal transformations in zinc phosphates.
title_sort kinetic and mechanistic investigations of hydrothermal transformations in zinc phosphates
work_keys_str_mv AT norquista kineticandmechanisticinvestigationsofhydrothermaltransformationsinzincphosphates
AT ohared kineticandmechanisticinvestigationsofhydrothermaltransformationsinzincphosphates