Normal hematopoietic progenitor subsets have distinct reactive oxygen species, BCL2 and cell-cycle profiles that are decoupled from maturation in acute myeloid leukemia

In acute myeloid leukemia (AML) quiescence and low oxidative state, linked to BCL2 mitochondrial regulation, endow leukemic stem cells (LSC) with treatment-resistance. LSC in CD34+ and more mature CD34- AML have heterogeneous immunophenotypes overlapping with normal stem/progenitor cells (SPC) but m...

Full description

Bibliographic Details
Main Authors: Khan, N, Hills, R, Knapper, S, Steadman, L, Qureshi, U, Rector, J, Bradbury, C, Russell, N, Vyas, P, Burnett, A, Grimwade, D, Hole, P, Freeman, S
Other Authors: Bertolini, F
Format: Journal article
Language:English
Published: Public Library of Science 2016
_version_ 1826261831030669312
author Khan, N
Hills, R
Knapper, S
Steadman, L
Qureshi, U
Rector, J
Bradbury, C
Russell, N
Vyas, P
Burnett, A
Grimwade, D
Hole, P
Freeman, S
author2 Bertolini, F
author_facet Bertolini, F
Khan, N
Hills, R
Knapper, S
Steadman, L
Qureshi, U
Rector, J
Bradbury, C
Russell, N
Vyas, P
Burnett, A
Grimwade, D
Hole, P
Freeman, S
author_sort Khan, N
collection OXFORD
description In acute myeloid leukemia (AML) quiescence and low oxidative state, linked to BCL2 mitochondrial regulation, endow leukemic stem cells (LSC) with treatment-resistance. LSC in CD34+ and more mature CD34- AML have heterogeneous immunophenotypes overlapping with normal stem/progenitor cells (SPC) but may be differentiated by functional markers. We therefore investigated the oxidative/reactive oxygen species (ROS) profile, its relationship with cell-cycle/BCL2 for normal SPC, and whether altered in AML and myelodysplasia (MDS). In control BM (n = 24), ROS levels were highest in granulocyte-macrophage progenitors (GMP) and CD34- myeloid precursors but megakaryocyte-erythroid progenitors had equivalent levels to CD34+CD38low immature-SPC although they were ki67high. BCL2 upregulation was specific to GMPs. This profile was also observed for CD34+SPC in MDS-without-excess-blasts (MDS-noEB, n = 12). Erythroid CD34- precursors were, however, abnormally ROS-high in MDS-noEB, potentially linking oxidative stress to cell loss. In pre-treatment AML (n = 93) and MDS-with-excess-blasts (MDS-RAEB) (n = 14), immunophenotypic mature-SPC had similar ROS levels to co-existing immature-SPC. However ROS levels varied between AMLs; Flt3ITD+/NPM1wild-type CD34+SPC had higher ROS than NPM1mutated CD34+ or CD34- SPC. An aberrant ki67lowBCL2high immunophenotype was observed in CD34+AML (most prominent in Flt3ITD AMLs) but also in CD34- AMLs and MDS-RAEB, suggesting a shared redox/pro-survival adaptation. Some patients had BCL2 overexpression in CD34+ ROS-high as well as ROS-low fractions which may be indicative of poor early response to standard chemotherapy. Thus normal SPC subsets have distinct ROS, cell-cycle, BCL2 profiles that in AML /MDS-RAEB are decoupled from maturation. The combined profile of these functional properties in AML subpopulations may be relevant to differential treatment resistance.
first_indexed 2024-03-06T19:26:45Z
format Journal article
id oxford-uuid:1bff3b24-60ef-4e74-9587-dc39028f02e8
institution University of Oxford
language English
last_indexed 2024-03-06T19:26:45Z
publishDate 2016
publisher Public Library of Science
record_format dspace
spelling oxford-uuid:1bff3b24-60ef-4e74-9587-dc39028f02e82022-03-26T11:03:22ZNormal hematopoietic progenitor subsets have distinct reactive oxygen species, BCL2 and cell-cycle profiles that are decoupled from maturation in acute myeloid leukemiaJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:1bff3b24-60ef-4e74-9587-dc39028f02e8EnglishSymplectic Elements at OxfordPublic Library of Science2016Khan, NHills, RKnapper, SSteadman, LQureshi, URector, JBradbury, CRussell, NVyas, PBurnett, AGrimwade, DHole, PFreeman, SBertolini, FIn acute myeloid leukemia (AML) quiescence and low oxidative state, linked to BCL2 mitochondrial regulation, endow leukemic stem cells (LSC) with treatment-resistance. LSC in CD34+ and more mature CD34- AML have heterogeneous immunophenotypes overlapping with normal stem/progenitor cells (SPC) but may be differentiated by functional markers. We therefore investigated the oxidative/reactive oxygen species (ROS) profile, its relationship with cell-cycle/BCL2 for normal SPC, and whether altered in AML and myelodysplasia (MDS). In control BM (n = 24), ROS levels were highest in granulocyte-macrophage progenitors (GMP) and CD34- myeloid precursors but megakaryocyte-erythroid progenitors had equivalent levels to CD34+CD38low immature-SPC although they were ki67high. BCL2 upregulation was specific to GMPs. This profile was also observed for CD34+SPC in MDS-without-excess-blasts (MDS-noEB, n = 12). Erythroid CD34- precursors were, however, abnormally ROS-high in MDS-noEB, potentially linking oxidative stress to cell loss. In pre-treatment AML (n = 93) and MDS-with-excess-blasts (MDS-RAEB) (n = 14), immunophenotypic mature-SPC had similar ROS levels to co-existing immature-SPC. However ROS levels varied between AMLs; Flt3ITD+/NPM1wild-type CD34+SPC had higher ROS than NPM1mutated CD34+ or CD34- SPC. An aberrant ki67lowBCL2high immunophenotype was observed in CD34+AML (most prominent in Flt3ITD AMLs) but also in CD34- AMLs and MDS-RAEB, suggesting a shared redox/pro-survival adaptation. Some patients had BCL2 overexpression in CD34+ ROS-high as well as ROS-low fractions which may be indicative of poor early response to standard chemotherapy. Thus normal SPC subsets have distinct ROS, cell-cycle, BCL2 profiles that in AML /MDS-RAEB are decoupled from maturation. The combined profile of these functional properties in AML subpopulations may be relevant to differential treatment resistance.
spellingShingle Khan, N
Hills, R
Knapper, S
Steadman, L
Qureshi, U
Rector, J
Bradbury, C
Russell, N
Vyas, P
Burnett, A
Grimwade, D
Hole, P
Freeman, S
Normal hematopoietic progenitor subsets have distinct reactive oxygen species, BCL2 and cell-cycle profiles that are decoupled from maturation in acute myeloid leukemia
title Normal hematopoietic progenitor subsets have distinct reactive oxygen species, BCL2 and cell-cycle profiles that are decoupled from maturation in acute myeloid leukemia
title_full Normal hematopoietic progenitor subsets have distinct reactive oxygen species, BCL2 and cell-cycle profiles that are decoupled from maturation in acute myeloid leukemia
title_fullStr Normal hematopoietic progenitor subsets have distinct reactive oxygen species, BCL2 and cell-cycle profiles that are decoupled from maturation in acute myeloid leukemia
title_full_unstemmed Normal hematopoietic progenitor subsets have distinct reactive oxygen species, BCL2 and cell-cycle profiles that are decoupled from maturation in acute myeloid leukemia
title_short Normal hematopoietic progenitor subsets have distinct reactive oxygen species, BCL2 and cell-cycle profiles that are decoupled from maturation in acute myeloid leukemia
title_sort normal hematopoietic progenitor subsets have distinct reactive oxygen species bcl2 and cell cycle profiles that are decoupled from maturation in acute myeloid leukemia
work_keys_str_mv AT khann normalhematopoieticprogenitorsubsetshavedistinctreactiveoxygenspeciesbcl2andcellcycleprofilesthataredecoupledfrommaturationinacutemyeloidleukemia
AT hillsr normalhematopoieticprogenitorsubsetshavedistinctreactiveoxygenspeciesbcl2andcellcycleprofilesthataredecoupledfrommaturationinacutemyeloidleukemia
AT knappers normalhematopoieticprogenitorsubsetshavedistinctreactiveoxygenspeciesbcl2andcellcycleprofilesthataredecoupledfrommaturationinacutemyeloidleukemia
AT steadmanl normalhematopoieticprogenitorsubsetshavedistinctreactiveoxygenspeciesbcl2andcellcycleprofilesthataredecoupledfrommaturationinacutemyeloidleukemia
AT qureshiu normalhematopoieticprogenitorsubsetshavedistinctreactiveoxygenspeciesbcl2andcellcycleprofilesthataredecoupledfrommaturationinacutemyeloidleukemia
AT rectorj normalhematopoieticprogenitorsubsetshavedistinctreactiveoxygenspeciesbcl2andcellcycleprofilesthataredecoupledfrommaturationinacutemyeloidleukemia
AT bradburyc normalhematopoieticprogenitorsubsetshavedistinctreactiveoxygenspeciesbcl2andcellcycleprofilesthataredecoupledfrommaturationinacutemyeloidleukemia
AT russelln normalhematopoieticprogenitorsubsetshavedistinctreactiveoxygenspeciesbcl2andcellcycleprofilesthataredecoupledfrommaturationinacutemyeloidleukemia
AT vyasp normalhematopoieticprogenitorsubsetshavedistinctreactiveoxygenspeciesbcl2andcellcycleprofilesthataredecoupledfrommaturationinacutemyeloidleukemia
AT burnetta normalhematopoieticprogenitorsubsetshavedistinctreactiveoxygenspeciesbcl2andcellcycleprofilesthataredecoupledfrommaturationinacutemyeloidleukemia
AT grimwaded normalhematopoieticprogenitorsubsetshavedistinctreactiveoxygenspeciesbcl2andcellcycleprofilesthataredecoupledfrommaturationinacutemyeloidleukemia
AT holep normalhematopoieticprogenitorsubsetshavedistinctreactiveoxygenspeciesbcl2andcellcycleprofilesthataredecoupledfrommaturationinacutemyeloidleukemia
AT freemans normalhematopoieticprogenitorsubsetshavedistinctreactiveoxygenspeciesbcl2andcellcycleprofilesthataredecoupledfrommaturationinacutemyeloidleukemia