Efficient probabilistic inference in the quest for physics beyond the standard model
We present a novel probabilistic programming framework that couples directly to existing large-scale simulators through a cross-platform probabilistic execution protocol, which allows general-purpose inference engines to record and control random number draws within simulators in a language-agnostic...
Main Authors: | Baydin, AG, Heinrich, L, Bhimji, W, Shao, L, Naderiparizi, S, Munk, A, Liu, J, Gram-Hansen, B, Louppe, G, Meadows, L, Toor, P, Lee, V, Prabhat, Cranmer, K, Wood, F |
---|---|
格式: | Conference item |
語言: | English |
出版: |
Neural Information Processing Systems
2019
|
相似書籍
-
Etalumis: bringing probabilistic programming to scientific simulators at scale
由: Baydin, AG, et al.
出版: (2019) -
Amortized rejection sampling in universal probabilistic programming
由: Naderiparizi, S, et al.
出版: (2022) -
Inference compilation and universal probabilistic programming
由: Le, T, et al.
出版: (2017) -
Attention for inference compilation
由: Harvey, W, et al.
出版: (2022) -
Extending probabilistic programming systems and applying them to real-world simulators
由: Gram-Hansen, B
出版: (2021)