Efficient probabilistic inference in the quest for physics beyond the standard model
We present a novel probabilistic programming framework that couples directly to existing large-scale simulators through a cross-platform probabilistic execution protocol, which allows general-purpose inference engines to record and control random number draws within simulators in a language-agnostic...
Egile Nagusiak: | Baydin, AG, Heinrich, L, Bhimji, W, Shao, L, Naderiparizi, S, Munk, A, Liu, J, Gram-Hansen, B, Louppe, G, Meadows, L, Toor, P, Lee, V, Prabhat, Cranmer, K, Wood, F |
---|---|
Formatua: | Conference item |
Hizkuntza: | English |
Argitaratua: |
Neural Information Processing Systems
2019
|
Antzeko izenburuak
-
Etalumis: bringing probabilistic programming to scientific simulators at scale
nork: Baydin, AG, et al.
Argitaratua: (2019) -
Amortized rejection sampling in universal probabilistic programming
nork: Naderiparizi, S, et al.
Argitaratua: (2022) -
Inference compilation and universal probabilistic programming
nork: Le, T, et al.
Argitaratua: (2017) -
Attention for inference compilation
nork: Harvey, W, et al.
Argitaratua: (2022) -
Extending probabilistic programming systems and applying them to real-world simulators
nork: Gram-Hansen, B
Argitaratua: (2021)