Parallel OWL 2 RL materialisation in centralised, main-memory RDF systems
We present a novel approach to parallel materialisation (i.e., fixpoint computation) of datalog programs in centralised, main-memory, multi-core RDF systems. Our approach comprises an algorithm that evenly distributes the workload to cores, and an RDF indexing data structure that supports efficient,...
Main Authors: | , , , , |
---|---|
Format: | Conference item |
Language: | English |
Published: |
AAAI Press
2014
|
Subjects: |
_version_ | 1826317682285215744 |
---|---|
author | Motik, B Nenov, Y Piro, R Horrocks, I Olteanu, D |
author_facet | Motik, B Nenov, Y Piro, R Horrocks, I Olteanu, D |
author_sort | Motik, B |
collection | OXFORD |
description | We present a novel approach to parallel materialisation (i.e., fixpoint computation) of datalog programs in centralised, main-memory, multi-core RDF systems. Our approach comprises an algorithm that evenly distributes the workload to cores, and an RDF indexing data structure that supports efficient, 'mostly' lock-free parallel updates. Our empirical evaluation shows that our approach parallelises computation very well: with 16 physical cores, materialisation can be up to 13.9 times faster than with just one core. |
first_indexed | 2024-03-06T19:32:03Z |
format | Conference item |
id | oxford-uuid:1dc87c23-6baf-4c09-b04a-e0410598f545 |
institution | University of Oxford |
language | English |
last_indexed | 2025-03-11T16:57:47Z |
publishDate | 2014 |
publisher | AAAI Press |
record_format | dspace |
spelling | oxford-uuid:1dc87c23-6baf-4c09-b04a-e0410598f5452025-03-05T10:19:44ZParallel OWL 2 RL materialisation in centralised, main-memory RDF systemsConference itemhttp://purl.org/coar/resource_type/c_5794uuid:1dc87c23-6baf-4c09-b04a-e0410598f545Description LogicsComputer ScienceEnglishOxford University Research Archive - ValetAAAI Press2014Motik, BNenov, YPiro, RHorrocks, IOlteanu, DWe present a novel approach to parallel materialisation (i.e., fixpoint computation) of datalog programs in centralised, main-memory, multi-core RDF systems. Our approach comprises an algorithm that evenly distributes the workload to cores, and an RDF indexing data structure that supports efficient, 'mostly' lock-free parallel updates. Our empirical evaluation shows that our approach parallelises computation very well: with 16 physical cores, materialisation can be up to 13.9 times faster than with just one core. |
spellingShingle | Description Logics Computer Science Motik, B Nenov, Y Piro, R Horrocks, I Olteanu, D Parallel OWL 2 RL materialisation in centralised, main-memory RDF systems |
title | Parallel OWL 2 RL materialisation in centralised, main-memory RDF systems |
title_full | Parallel OWL 2 RL materialisation in centralised, main-memory RDF systems |
title_fullStr | Parallel OWL 2 RL materialisation in centralised, main-memory RDF systems |
title_full_unstemmed | Parallel OWL 2 RL materialisation in centralised, main-memory RDF systems |
title_short | Parallel OWL 2 RL materialisation in centralised, main-memory RDF systems |
title_sort | parallel owl 2 rl materialisation in centralised main memory rdf systems |
topic | Description Logics Computer Science |
work_keys_str_mv | AT motikb parallelowl2rlmaterialisationincentralisedmainmemoryrdfsystems AT nenovy parallelowl2rlmaterialisationincentralisedmainmemoryrdfsystems AT piror parallelowl2rlmaterialisationincentralisedmainmemoryrdfsystems AT horrocksi parallelowl2rlmaterialisationincentralisedmainmemoryrdfsystems AT olteanud parallelowl2rlmaterialisationincentralisedmainmemoryrdfsystems |