Parallel OWL 2 RL materialisation in centralised, main-memory RDF systems

We present a novel approach to parallel materialisation (i.e., fixpoint computation) of datalog programs in centralised, main-memory, multi-core RDF systems. Our approach comprises an algorithm that evenly distributes the workload to cores, and an RDF indexing data structure that supports efficient,...

Full description

Bibliographic Details
Main Authors: Motik, B, Nenov, Y, Piro, R, Horrocks, I, Olteanu, D
Format: Conference item
Language:English
Published: AAAI Press 2014
Subjects:
_version_ 1826317682285215744
author Motik, B
Nenov, Y
Piro, R
Horrocks, I
Olteanu, D
author_facet Motik, B
Nenov, Y
Piro, R
Horrocks, I
Olteanu, D
author_sort Motik, B
collection OXFORD
description We present a novel approach to parallel materialisation (i.e., fixpoint computation) of datalog programs in centralised, main-memory, multi-core RDF systems. Our approach comprises an algorithm that evenly distributes the workload to cores, and an RDF indexing data structure that supports efficient, 'mostly' lock-free parallel updates. Our empirical evaluation shows that our approach parallelises computation very well: with 16 physical cores, materialisation can be up to 13.9 times faster than with just one core.
first_indexed 2024-03-06T19:32:03Z
format Conference item
id oxford-uuid:1dc87c23-6baf-4c09-b04a-e0410598f545
institution University of Oxford
language English
last_indexed 2025-03-11T16:57:47Z
publishDate 2014
publisher AAAI Press
record_format dspace
spelling oxford-uuid:1dc87c23-6baf-4c09-b04a-e0410598f5452025-03-05T10:19:44ZParallel OWL 2 RL materialisation in centralised, main-memory RDF systemsConference itemhttp://purl.org/coar/resource_type/c_5794uuid:1dc87c23-6baf-4c09-b04a-e0410598f545Description LogicsComputer ScienceEnglishOxford University Research Archive - ValetAAAI Press2014Motik, BNenov, YPiro, RHorrocks, IOlteanu, DWe present a novel approach to parallel materialisation (i.e., fixpoint computation) of datalog programs in centralised, main-memory, multi-core RDF systems. Our approach comprises an algorithm that evenly distributes the workload to cores, and an RDF indexing data structure that supports efficient, 'mostly' lock-free parallel updates. Our empirical evaluation shows that our approach parallelises computation very well: with 16 physical cores, materialisation can be up to 13.9 times faster than with just one core.
spellingShingle Description Logics
Computer Science
Motik, B
Nenov, Y
Piro, R
Horrocks, I
Olteanu, D
Parallel OWL 2 RL materialisation in centralised, main-memory RDF systems
title Parallel OWL 2 RL materialisation in centralised, main-memory RDF systems
title_full Parallel OWL 2 RL materialisation in centralised, main-memory RDF systems
title_fullStr Parallel OWL 2 RL materialisation in centralised, main-memory RDF systems
title_full_unstemmed Parallel OWL 2 RL materialisation in centralised, main-memory RDF systems
title_short Parallel OWL 2 RL materialisation in centralised, main-memory RDF systems
title_sort parallel owl 2 rl materialisation in centralised main memory rdf systems
topic Description Logics
Computer Science
work_keys_str_mv AT motikb parallelowl2rlmaterialisationincentralisedmainmemoryrdfsystems
AT nenovy parallelowl2rlmaterialisationincentralisedmainmemoryrdfsystems
AT piror parallelowl2rlmaterialisationincentralisedmainmemoryrdfsystems
AT horrocksi parallelowl2rlmaterialisationincentralisedmainmemoryrdfsystems
AT olteanud parallelowl2rlmaterialisationincentralisedmainmemoryrdfsystems