High-current oversized annular electron beam formation for high-power microwave research

The authors report the study of a high-current accelerator, capable of producing thin (2 mm) annular, mildly relativistic (450 keV) electron beams (up to 1.5 kA) of diameter of 70 mm. Propagation of an electron beam through a 2 m long, coaxial beam channel, with inner and outer conductor radii of 30...

Full description

Bibliographic Details
Main Authors: Konoplev, I, Cross, A, MacInnes, P, He, W, Whyte, C, Phelps, A, Robertson, C, Ronald, K, Young, A
Format: Journal article
Language:English
Published: 2006
Description
Summary:The authors report the study of a high-current accelerator, capable of producing thin (2 mm) annular, mildly relativistic (450 keV) electron beams (up to 1.5 kA) of diameter of 70 mm. Propagation of an electron beam through a 2 m long, coaxial beam channel, with inner and outer conductor radii of 30 and 40 mm, respectively, was demonstrated with the electron beam current at the beam-channel output measured using a Rogowski coil. The results obtained are compared with those predicted via numerical simulation. The electron beam obtained was used for proof-of-concept work demonstrating the operation of a high-power maser operating at millimeter wavelengths, using two-dimensional distributed feedback. © 2006 American Institute of Physics.