Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains

Multiple-spiral-wave solutions of the general cubic complex Ginzburg–Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of the twist parameter . We derive explicit laws of mot...

Full description

Bibliographic Details
Main Authors: Aguareles, M, Chapman, SJ, Witelski, T
Format: Journal article
Language:English
Published: Elsevier 2020
Description
Summary:Multiple-spiral-wave solutions of the general cubic complex Ginzburg–Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of the twist parameter . We derive explicit laws of motion for rectangular domains and we show that the motion of spirals becomes exponentially slow when the twist parameter exceeds a critical value depending on the size of the domain. The oscillation frequency of multiple-spiral patterns is also analytically obtained.