Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains

Multiple-spiral-wave solutions of the general cubic complex Ginzburg–Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of the twist parameter . We derive explicit laws of mot...

Full description

Bibliographic Details
Main Authors: Aguareles, M, Chapman, SJ, Witelski, T
Format: Journal article
Language:English
Published: Elsevier 2020
_version_ 1797057566387208192
author Aguareles, M
Chapman, SJ
Witelski, T
author_facet Aguareles, M
Chapman, SJ
Witelski, T
author_sort Aguareles, M
collection OXFORD
description Multiple-spiral-wave solutions of the general cubic complex Ginzburg–Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of the twist parameter . We derive explicit laws of motion for rectangular domains and we show that the motion of spirals becomes exponentially slow when the twist parameter exceeds a critical value depending on the size of the domain. The oscillation frequency of multiple-spiral patterns is also analytically obtained.
first_indexed 2024-03-06T19:38:16Z
format Journal article
id oxford-uuid:1fc4dd22-b19b-48dd-b790-828b677b3416
institution University of Oxford
language English
last_indexed 2024-03-06T19:38:16Z
publishDate 2020
publisher Elsevier
record_format dspace
spelling oxford-uuid:1fc4dd22-b19b-48dd-b790-828b677b34162022-03-26T11:23:54ZDynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domainsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:1fc4dd22-b19b-48dd-b790-828b677b3416EnglishSymplectic ElementsElsevier2020Aguareles, MChapman, SJWitelski, TMultiple-spiral-wave solutions of the general cubic complex Ginzburg–Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of the twist parameter . We derive explicit laws of motion for rectangular domains and we show that the motion of spirals becomes exponentially slow when the twist parameter exceeds a critical value depending on the size of the domain. The oscillation frequency of multiple-spiral patterns is also analytically obtained.
spellingShingle Aguareles, M
Chapman, SJ
Witelski, T
Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains
title Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains
title_full Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains
title_fullStr Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains
title_full_unstemmed Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains
title_short Dynamics of spiral waves in the complex Ginzburg–Landau equation in bounded domains
title_sort dynamics of spiral waves in the complex ginzburg landau equation in bounded domains
work_keys_str_mv AT aguarelesm dynamicsofspiralwavesinthecomplexginzburglandauequationinboundeddomains
AT chapmansj dynamicsofspiralwavesinthecomplexginzburglandauequationinboundeddomains
AT witelskit dynamicsofspiralwavesinthecomplexginzburglandauequationinboundeddomains