Denotational validation of higher-order Bayesian inference
<p>We present a modular semantic account of Bayesian inference algorithms for probabilistic programming languages, as used in data science and machine learning. Sophisticated inference algorithms are often explained in terms of composition of smaller parts. However, neither their theoretical j...
Auteurs principaux: | Scibior, A, Kammar, O, Vakar, M, Staton, S, Yang, H, Cai, Y, Ostermann, K, Moss, SK, Heunen, C, Ghahramani, Z |
---|---|
Format: | Journal article |
Publié: |
Association for Computing Machinery
2018
|
Documents similaires
-
A convenient category for higher-order probability theory
par: Heunen, C, et autres
Publié: (2017) -
Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints
par: Yang, H, et autres
Publié: (2016) -
Higher order automatic differentiation of higher order functions
par: Huot, M, et autres
Publié: (2022) -
A domain theory for statistical probabilistic programming
par: Vákár, M, et autres
Publié: (2019) -
A fully abstract denotational semantics for the calculus of higher−order communicating systems
par: Thomsen, B, et autres
Publié: (2001)