A multispecies pseudoadiabat for simulating condensable-rich exoplanet atmospheres

Central stages in the evolution of rocky, potentially habitable planets may play out under atmospheric conditions with a large inventory of nondilute condensable components. Variations in condensate retention and accompanying changes in local lapse rate may substantially affect planetary climate and...

पूर्ण विवरण

ग्रंथसूची विवरण
मुख्य लेखकों: Graham, RJ, Lichtenberg, T, Boukrouche, R, Pierrehumbert, R
स्वरूप: Journal article
भाषा:English
प्रकाशित: American Astronomical Society 2021
_version_ 1826262704755572736
author Graham, RJ
Lichtenberg, T
Boukrouche, R
Pierrehumbert, R
author_facet Graham, RJ
Lichtenberg, T
Boukrouche, R
Pierrehumbert, R
author_sort Graham, RJ
collection OXFORD
description Central stages in the evolution of rocky, potentially habitable planets may play out under atmospheric conditions with a large inventory of nondilute condensable components. Variations in condensate retention and accompanying changes in local lapse rate may substantially affect planetary climate and surface conditions, but there is currently no general theory to effectively describe such atmospheres. In this article, expanding on the work by Li et al., we generalize the single-component moist pseudoadiabat derivation in Pierrehumbert to allow for multiple condensing components of arbitrary diluteness and retained condensate fraction. The introduction of a freely tunable retained condensate fraction allows for a flexible, self-consistent treatment of atmospheres with nondilute condensable components. To test the pseudoadiabat's capabilities for simulating a diverse range of climates, we apply the formula to planetary atmospheres with compositions, surface pressures, and temperatures representing important stages with condensable-rich atmospheres in the evolution of terrestrial planets: a magma ocean planet in a runaway greenhouse state; a post-impact, late-veneer-analog planet with a complex atmospheric composition; and an Archean Earth-like planet near the outer edge of the classical circumstellar habitable zone. We find that variations in the retention of multiple nondilute condensable species can significantly affect the lapse rate and in turn outgoing radiation and the spectral signatures of planetary atmospheres. The presented formulation allows for a more comprehensive treatment of the climate evolution of rocky exoplanets and early Earth analogs.
first_indexed 2024-03-06T19:40:18Z
format Journal article
id oxford-uuid:206f5217-e26d-493f-98ea-3427584dd53f
institution University of Oxford
language English
last_indexed 2024-03-06T19:40:18Z
publishDate 2021
publisher American Astronomical Society
record_format dspace
spelling oxford-uuid:206f5217-e26d-493f-98ea-3427584dd53f2022-03-26T11:27:37ZA multispecies pseudoadiabat for simulating condensable-rich exoplanet atmospheresJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:206f5217-e26d-493f-98ea-3427584dd53fEnglishSymplectic ElementsAmerican Astronomical Society2021Graham, RJLichtenberg, TBoukrouche, RPierrehumbert, RCentral stages in the evolution of rocky, potentially habitable planets may play out under atmospheric conditions with a large inventory of nondilute condensable components. Variations in condensate retention and accompanying changes in local lapse rate may substantially affect planetary climate and surface conditions, but there is currently no general theory to effectively describe such atmospheres. In this article, expanding on the work by Li et al., we generalize the single-component moist pseudoadiabat derivation in Pierrehumbert to allow for multiple condensing components of arbitrary diluteness and retained condensate fraction. The introduction of a freely tunable retained condensate fraction allows for a flexible, self-consistent treatment of atmospheres with nondilute condensable components. To test the pseudoadiabat's capabilities for simulating a diverse range of climates, we apply the formula to planetary atmospheres with compositions, surface pressures, and temperatures representing important stages with condensable-rich atmospheres in the evolution of terrestrial planets: a magma ocean planet in a runaway greenhouse state; a post-impact, late-veneer-analog planet with a complex atmospheric composition; and an Archean Earth-like planet near the outer edge of the classical circumstellar habitable zone. We find that variations in the retention of multiple nondilute condensable species can significantly affect the lapse rate and in turn outgoing radiation and the spectral signatures of planetary atmospheres. The presented formulation allows for a more comprehensive treatment of the climate evolution of rocky exoplanets and early Earth analogs.
spellingShingle Graham, RJ
Lichtenberg, T
Boukrouche, R
Pierrehumbert, R
A multispecies pseudoadiabat for simulating condensable-rich exoplanet atmospheres
title A multispecies pseudoadiabat for simulating condensable-rich exoplanet atmospheres
title_full A multispecies pseudoadiabat for simulating condensable-rich exoplanet atmospheres
title_fullStr A multispecies pseudoadiabat for simulating condensable-rich exoplanet atmospheres
title_full_unstemmed A multispecies pseudoadiabat for simulating condensable-rich exoplanet atmospheres
title_short A multispecies pseudoadiabat for simulating condensable-rich exoplanet atmospheres
title_sort multispecies pseudoadiabat for simulating condensable rich exoplanet atmospheres
work_keys_str_mv AT grahamrj amultispeciespseudoadiabatforsimulatingcondensablerichexoplanetatmospheres
AT lichtenbergt amultispeciespseudoadiabatforsimulatingcondensablerichexoplanetatmospheres
AT boukroucher amultispeciespseudoadiabatforsimulatingcondensablerichexoplanetatmospheres
AT pierrehumbertr amultispeciespseudoadiabatforsimulatingcondensablerichexoplanetatmospheres
AT grahamrj multispeciespseudoadiabatforsimulatingcondensablerichexoplanetatmospheres
AT lichtenbergt multispeciespseudoadiabatforsimulatingcondensablerichexoplanetatmospheres
AT boukroucher multispeciespseudoadiabatforsimulatingcondensablerichexoplanetatmospheres
AT pierrehumbertr multispeciespseudoadiabatforsimulatingcondensablerichexoplanetatmospheres