Learning object categories from Google’s image search
Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by utilizing the raw output of image search engines available on the Intern...
Главные авторы: | Fergus, R, Fei-Fei, L, Perona, P, Zisserman, A |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
IEEE
2005
|
Схожие документы
-
Learning object categories from internet image searches
по: Fergus, R, и др.
Опубликовано: (2010) -
A visual category filter for Google Images
по: Fergus, R, и др.
Опубликовано: (2004) -
A sparse object category model for efficient learning and exhaustive recognition
по: Fergus, R, и др.
Опубликовано: (2005) -
A sparse object category model for efficient learning and complete recognition
по: Fergus, R, и др.
Опубликовано: (2006) -
Object class recognition by unsupervised scale-invariant learning
по: Fergus, R, и др.
Опубликовано: (2003)