Learning object categories from Google’s image search
Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by utilizing the raw output of image search engines available on the Intern...
Hauptverfasser: | Fergus, R, Fei-Fei, L, Perona, P, Zisserman, A |
---|---|
Format: | Conference item |
Sprache: | English |
Veröffentlicht: |
IEEE
2005
|
Ähnliche Einträge
Ähnliche Einträge
-
Learning object categories from internet image searches
von: Fergus, R, et al.
Veröffentlicht: (2010) -
A visual category filter for Google Images
von: Fergus, R, et al.
Veröffentlicht: (2004) -
A sparse object category model for efficient learning and exhaustive recognition
von: Fergus, R, et al.
Veröffentlicht: (2005) -
A sparse object category model for efficient learning and complete recognition
von: Fergus, R, et al.
Veröffentlicht: (2006) -
Object class recognition by unsupervised scale-invariant learning
von: Fergus, R, et al.
Veröffentlicht: (2003)