Learning object categories from Google’s image search
Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by utilizing the raw output of image search engines available on the Intern...
Κύριοι συγγραφείς: | Fergus, R, Fei-Fei, L, Perona, P, Zisserman, A |
---|---|
Μορφή: | Conference item |
Γλώσσα: | English |
Έκδοση: |
IEEE
2005
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Learning object categories from internet image searches
ανά: Fergus, R, κ.ά.
Έκδοση: (2010) -
A visual category filter for Google Images
ανά: Fergus, R, κ.ά.
Έκδοση: (2004) -
A sparse object category model for efficient learning and exhaustive recognition
ανά: Fergus, R, κ.ά.
Έκδοση: (2005) -
A sparse object category model for efficient learning and complete recognition
ανά: Fergus, R, κ.ά.
Έκδοση: (2006) -
Object class recognition by unsupervised scale-invariant learning
ανά: Fergus, R, κ.ά.
Έκδοση: (2003)