Learning object categories from Google’s image search
Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by utilizing the raw output of image search engines available on the Intern...
Auteurs principaux: | Fergus, R, Fei-Fei, L, Perona, P, Zisserman, A |
---|---|
Format: | Conference item |
Langue: | English |
Publié: |
IEEE
2005
|
Documents similaires
-
Learning object categories from internet image searches
par: Fergus, R, et autres
Publié: (2010) -
A visual category filter for Google Images
par: Fergus, R, et autres
Publié: (2004) -
A sparse object category model for efficient learning and exhaustive recognition
par: Fergus, R, et autres
Publié: (2005) -
A sparse object category model for efficient learning and complete recognition
par: Fergus, R, et autres
Publié: (2006) -
Object class recognition by unsupervised scale-invariant learning
par: Fergus, R, et autres
Publié: (2003)