Learning object categories from Google’s image search
Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by utilizing the raw output of image search engines available on the Intern...
Main Authors: | Fergus, R, Fei-Fei, L, Perona, P, Zisserman, A |
---|---|
פורמט: | Conference item |
שפה: | English |
יצא לאור: |
IEEE
2005
|
פריטים דומים
-
Learning object categories from internet image searches
מאת: Fergus, R, et al.
יצא לאור: (2010) -
A visual category filter for Google Images
מאת: Fergus, R, et al.
יצא לאור: (2004) -
A sparse object category model for efficient learning and exhaustive recognition
מאת: Fergus, R, et al.
יצא לאור: (2005) -
A sparse object category model for efficient learning and complete recognition
מאת: Fergus, R, et al.
יצא לאור: (2006) -
Object class recognition by unsupervised scale-invariant learning
מאת: Fergus, R, et al.
יצא לאור: (2003)