Learning object categories from Google’s image search
Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by utilizing the raw output of image search engines available on the Intern...
Autori principali: | Fergus, R, Fei-Fei, L, Perona, P, Zisserman, A |
---|---|
Natura: | Conference item |
Lingua: | English |
Pubblicazione: |
IEEE
2005
|
Documenti analoghi
-
Learning object categories from internet image searches
di: Fergus, R, et al.
Pubblicazione: (2010) -
A visual category filter for Google Images
di: Fergus, R, et al.
Pubblicazione: (2004) -
A sparse object category model for efficient learning and exhaustive recognition
di: Fergus, R, et al.
Pubblicazione: (2005) -
A sparse object category model for efficient learning and complete recognition
di: Fergus, R, et al.
Pubblicazione: (2006) -
Object class recognition by unsupervised scale-invariant learning
di: Fergus, R, et al.
Pubblicazione: (2003)