Learning object categories from Google’s image search
Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by utilizing the raw output of image search engines available on the Intern...
主要な著者: | Fergus, R, Fei-Fei, L, Perona, P, Zisserman, A |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
IEEE
2005
|
類似資料
-
Learning object categories from internet image searches
著者:: Fergus, R, 等
出版事項: (2010) -
A visual category filter for Google Images
著者:: Fergus, R, 等
出版事項: (2004) -
A sparse object category model for efficient learning and exhaustive recognition
著者:: Fergus, R, 等
出版事項: (2005) -
A sparse object category model for efficient learning and complete recognition
著者:: Fergus, R, 等
出版事項: (2006) -
Object class recognition by unsupervised scale-invariant learning
著者:: Fergus, R, 等
出版事項: (2003)