Learning object categories from Google’s image search
Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by utilizing the raw output of image search engines available on the Intern...
Main Authors: | Fergus, R, Fei-Fei, L, Perona, P, Zisserman, A |
---|---|
Formato: | Conference item |
Idioma: | English |
Publicado em: |
IEEE
2005
|
Registos relacionados
-
Learning object categories from internet image searches
Por: Fergus, R, et al.
Publicado em: (2010) -
A visual category filter for Google Images
Por: Fergus, R, et al.
Publicado em: (2004) -
A sparse object category model for efficient learning and exhaustive recognition
Por: Fergus, R, et al.
Publicado em: (2005) -
A sparse object category model for efficient learning and complete recognition
Por: Fergus, R, et al.
Publicado em: (2006) -
Object class recognition by unsupervised scale-invariant learning
Por: Fergus, R, et al.
Publicado em: (2003)