Learning object categories from Google’s image search
Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by utilizing the raw output of image search engines available on the Intern...
Asıl Yazarlar: | Fergus, R, Fei-Fei, L, Perona, P, Zisserman, A |
---|---|
Materyal Türü: | Conference item |
Dil: | English |
Baskı/Yayın Bilgisi: |
IEEE
2005
|
Benzer Materyaller
-
Learning object categories from internet image searches
Yazar:: Fergus, R, ve diğerleri
Baskı/Yayın Bilgisi: (2010) -
A visual category filter for Google Images
Yazar:: Fergus, R, ve diğerleri
Baskı/Yayın Bilgisi: (2004) -
A sparse object category model for efficient learning and exhaustive recognition
Yazar:: Fergus, R, ve diğerleri
Baskı/Yayın Bilgisi: (2005) -
A sparse object category model for efficient learning and complete recognition
Yazar:: Fergus, R, ve diğerleri
Baskı/Yayın Bilgisi: (2006) -
Object class recognition by unsupervised scale-invariant learning
Yazar:: Fergus, R, ve diğerleri
Baskı/Yayın Bilgisi: (2003)