Origin of collision-induced molecular orientation.

Collision-induced rotational angular momentum orientation is a fundamental property of molecular scattering, which is sensitive to the balance between attractive and repulsive forces at play during collision. Here, we quantify a new mechanism leading to orientation, which is purely quantum mechanica...

Full description

Bibliographic Details
Main Authors: Brouard, M, Hornung, B, Aoiz, F
Format: Journal article
Language:English
Published: 2013
Description
Summary:Collision-induced rotational angular momentum orientation is a fundamental property of molecular scattering, which is sensitive to the balance between attractive and repulsive forces at play during collision. Here, we quantify a new mechanism leading to orientation, which is purely quantum mechanical in origin. Although the new mechanism is quite general, and will operate more widely in atomic and molecular scattering, it is observed here for impulsive hard shell collisions, for which the orientation vanishes classically. The quantum mechanism can thus be studied in isolation from other processes. The orientation is proposed to originate from the nonlocal nature of the quantum mechanical collision encounter.