Filter inference: a scalable nonlinear mixed effects inference approach for snapshot time series data
Variability is an intrinsic property of biological systems and is often at the heart of their complex behaviour. Examples range from cell-to-cell variability in cell signalling pathways to variability in the response to treatment across patients. A popular approach to model and understand this varia...
Hauptverfasser: | Augustin, D, Lambert, B, Wang, K, Walz, A-C, Robinson, M, Gavaghan, D |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
Public Library of Science
2023
|
Ähnliche Einträge
Ähnliche Einträge
-
Bayesian time series models and scalable inference
von: Johnson, Matthew James, Ph. D. Massachusetts Institute of Technology
Veröffentlicht: (2014) -
Probabilistic inference on noisy time series (PINTS)
von: Clerx, M, et al.
Veröffentlicht: (2019) -
Scalable online nonlinear goal-oriented inference with physics-informed maps
von: Li, Harriet.
Veröffentlicht: (2019) -
Scalable inference in state-space models
von: Middleton, L
Veröffentlicht: (2019) -
Bayesian inference for biological time series
von: Creswell, R
Veröffentlicht: (2023)