Filter inference: a scalable nonlinear mixed effects inference approach for snapshot time series data
Variability is an intrinsic property of biological systems and is often at the heart of their complex behaviour. Examples range from cell-to-cell variability in cell signalling pathways to variability in the response to treatment across patients. A popular approach to model and understand this varia...
Hoofdauteurs: | Augustin, D, Lambert, B, Wang, K, Walz, A-C, Robinson, M, Gavaghan, D |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
Public Library of Science
2023
|
Gelijkaardige items
-
Bayesian time series models and scalable inference
door: Johnson, Matthew James, Ph. D. Massachusetts Institute of Technology
Gepubliceerd in: (2014) -
Probabilistic inference on noisy time series (PINTS)
door: Clerx, M, et al.
Gepubliceerd in: (2019) -
Scalable online nonlinear goal-oriented inference with physics-informed maps
door: Li, Harriet.
Gepubliceerd in: (2019) -
Scalable inference in state-space models
door: Middleton, L
Gepubliceerd in: (2019) -
Bayesian inference for biological time series
door: Creswell, R
Gepubliceerd in: (2023)