Filter inference: a scalable nonlinear mixed effects inference approach for snapshot time series data
Variability is an intrinsic property of biological systems and is often at the heart of their complex behaviour. Examples range from cell-to-cell variability in cell signalling pathways to variability in the response to treatment across patients. A popular approach to model and understand this varia...
Главные авторы: | Augustin, D, Lambert, B, Wang, K, Walz, A-C, Robinson, M, Gavaghan, D |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Public Library of Science
2023
|
Схожие документы
-
Bayesian time series models and scalable inference
по: Johnson, Matthew James, Ph. D. Massachusetts Institute of Technology
Опубликовано: (2014) -
Probabilistic inference on noisy time series (PINTS)
по: Clerx, M, и др.
Опубликовано: (2019) -
Scalable online nonlinear goal-oriented inference with physics-informed maps
по: Li, Harriet.
Опубликовано: (2019) -
Scalable inference in state-space models
по: Middleton, L
Опубликовано: (2019) -
Bayesian inference for biological time series
по: Creswell, R
Опубликовано: (2023)