A higher-order generalized singular value decomposition for rank-deficient matrices

The higher-order generalized singular value decomposition (HO-GSVD) is a matrix factorization technique that extends the GSVD to <i>N</i> ≥ 2 data matrices and can be used to identify common subspaces that are shared across multiple large-scale datasets with different row dimensions. The...

Full description

Bibliographic Details
Main Authors: Kempf, I, Goulart, PJ, Duncan, SR
Format: Journal article
Language:English
Published: Society for Industrial and Applied Mathematics 2023
_version_ 1797111145720446976
author Kempf, I
Goulart, PJ
Duncan, SR
author_facet Kempf, I
Goulart, PJ
Duncan, SR
author_sort Kempf, I
collection OXFORD
description The higher-order generalized singular value decomposition (HO-GSVD) is a matrix factorization technique that extends the GSVD to <i>N</i> ≥ 2 data matrices and can be used to identify common subspaces that are shared across multiple large-scale datasets with different row dimensions. The standard HO-GSVD factors <i>N</i> matrices <i>A</i><sub><i>i</i></sub> ∈ ℝ<sup><i>m</i><sub><i>i</i></sub>×<i>n</i></sup> as <i>A</i><sub><i>i</i></sub> = <i>U<sub>i</sub></i>∑<sub><i>i</i></sub><i>V</i><sup>T</sup> but requires that each of the matrices <i>A</i><sub><i>i</i></sub> has full column rank. We propose a modification of the HO-GSVD that extends its applicability to rank-deficient data matrices <i>A</i><sub><i>i</i></sub>. If the matrix of stacked <i>A</i><sub><i>i</i></sub> has full rank, we show that the properties of the original HO-GSVD extend to our approach. We extend the notion of common subspaces to isolated subspaces, which identify features that are unique to one <i>A</i><sub><i>i</i></sub>. We also extend our results to the higher-order cosine-sine decomposition (HO-CSD), which is closely related to the HO-GSVD. Our extension of the standard HO-GSVD allows its application to matrices with <i>m<sub>i</sub></i> < <i>n</i> or rank (<i>A</i><sub><i>i</i></sub>) < <i>n</i>, such as those encountered in bioinformatics, neuroscience, control theory, and classification problems.
first_indexed 2024-03-07T08:04:39Z
format Journal article
id oxford-uuid:218bce04-a2f5-4b43-af60-ba3eab79d896
institution University of Oxford
language English
last_indexed 2024-03-07T08:04:39Z
publishDate 2023
publisher Society for Industrial and Applied Mathematics
record_format dspace
spelling oxford-uuid:218bce04-a2f5-4b43-af60-ba3eab79d8962023-10-30T12:03:50ZA higher-order generalized singular value decomposition for rank-deficient matricesJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:218bce04-a2f5-4b43-af60-ba3eab79d896EnglishSymplectic ElementsSociety for Industrial and Applied Mathematics2023Kempf, IGoulart, PJDuncan, SRThe higher-order generalized singular value decomposition (HO-GSVD) is a matrix factorization technique that extends the GSVD to <i>N</i> ≥ 2 data matrices and can be used to identify common subspaces that are shared across multiple large-scale datasets with different row dimensions. The standard HO-GSVD factors <i>N</i> matrices <i>A</i><sub><i>i</i></sub> ∈ ℝ<sup><i>m</i><sub><i>i</i></sub>×<i>n</i></sup> as <i>A</i><sub><i>i</i></sub> = <i>U<sub>i</sub></i>∑<sub><i>i</i></sub><i>V</i><sup>T</sup> but requires that each of the matrices <i>A</i><sub><i>i</i></sub> has full column rank. We propose a modification of the HO-GSVD that extends its applicability to rank-deficient data matrices <i>A</i><sub><i>i</i></sub>. If the matrix of stacked <i>A</i><sub><i>i</i></sub> has full rank, we show that the properties of the original HO-GSVD extend to our approach. We extend the notion of common subspaces to isolated subspaces, which identify features that are unique to one <i>A</i><sub><i>i</i></sub>. We also extend our results to the higher-order cosine-sine decomposition (HO-CSD), which is closely related to the HO-GSVD. Our extension of the standard HO-GSVD allows its application to matrices with <i>m<sub>i</sub></i> < <i>n</i> or rank (<i>A</i><sub><i>i</i></sub>) < <i>n</i>, such as those encountered in bioinformatics, neuroscience, control theory, and classification problems.
spellingShingle Kempf, I
Goulart, PJ
Duncan, SR
A higher-order generalized singular value decomposition for rank-deficient matrices
title A higher-order generalized singular value decomposition for rank-deficient matrices
title_full A higher-order generalized singular value decomposition for rank-deficient matrices
title_fullStr A higher-order generalized singular value decomposition for rank-deficient matrices
title_full_unstemmed A higher-order generalized singular value decomposition for rank-deficient matrices
title_short A higher-order generalized singular value decomposition for rank-deficient matrices
title_sort higher order generalized singular value decomposition for rank deficient matrices
work_keys_str_mv AT kempfi ahigherordergeneralizedsingularvaluedecompositionforrankdeficientmatrices
AT goulartpj ahigherordergeneralizedsingularvaluedecompositionforrankdeficientmatrices
AT duncansr ahigherordergeneralizedsingularvaluedecompositionforrankdeficientmatrices
AT kempfi higherordergeneralizedsingularvaluedecompositionforrankdeficientmatrices
AT goulartpj higherordergeneralizedsingularvaluedecompositionforrankdeficientmatrices
AT duncansr higherordergeneralizedsingularvaluedecompositionforrankdeficientmatrices