Summary: | We report the study of the skyrmion state near the surface of Cu₂OSeO₃ using soft resonant elastic x-ray scattering (REXS) at the Cu L₃ edge. Within the lateral sampling area of 200 × 200 µm², we found a long-range-ordered skyrmion lattice phase as well as the formation of skyrmion domains via the multiple splitting of the diffraction spots. In a recent REXS study of the skyrmion phase of Cu₂OSeO₃ [Phys. Rev. Lett. 112, 167202 (2014)], Langner et al. reported a double-splitting which they interpret as arising from the moiré pattern of two superposed skyrmion sublattices, originating from the two inequivalent Cu sites. However, we find no energy splitting of the Cu peak in xray absorption measurements, which is to be expected considering the system in more detail. We show that the experimental data reported by Langner et al. does not support their interpretation and discuss alternative origins of the peak splitting. In particular, we find that for magnetic field directions deviating from the major cubic axes, a multidomain skyrmion lattice state is obtained, which consistently explains the splitting of the magnetic spots into two—and more—peaks.
|